The short- and long-term successes of tibial cementless implants depend on the initial fixation stability often provided by posts and screws. In this work, a metallic plate was fixed to a polyurethane block with either two bone screws, two smooth-surfaced posts, or two novel smooth-surfaced posts with adjustable inclinations. For this last case, inclinations of 0, 1.5, and 3 deg were considered following insertion. A load of 1031 N was eccentrically applied on the plate at an angle of ∼14 deg, which resulted in a 1000 N axial compressive force and a 250 N shear force. The response was measured under static and repetitive loading up to 4000 cycles at 1 Hz. The measured results demonstrate subsidence under load, lift-off on the unloaded side, and horizontal translation of the plate specially at the loaded side. Fatigue loading increased the displacements, primarily during the first 100 cycles. Comparison of various fixation systems indicated that the plate with screw fixation was the stiffest with the least subsidence and liftoff. The increase in post inclination from 0 to 3 deg stiffened the plate by diminishing the liftoff. All fixation systems demonstrated deterioration under repetitive loads. In general, the finite element predictions of the experimental fixation systems were in agreement with measurements. The finite element analyses showed that porous coated posts (modeled with nonlinear interface friction with and without coupling) generated slightly less resistance to liftoff than smooth-surfaced posts. In the presence of porous coated posts, Coulomb friction greatly overestimated the rigidity by reducing the liftoff and subsidence to levels even smaller than those predicted for the design with screw fixation. The sequence of combined load application also influenced the predicted response. Finally, the finite element model incorporating measured interface friction and pull-out responses can be used for the analysis of cementless total joint replacement systems during the post-operation period.

1.
Cameron
,
H. U.
,
Pilliar
,
R. M.
, and
Macnab
,
I.
,
1973
, “
The Effect of Movement on the Bonding of Porous Metal to Bone
,”
J. Biomed. Mater. Res.
,
7
, pp.
301
311
.
2.
Ducheyne
,
P.
,
DeMeester
,
P.
,
Aernoudt
,
E.
,
Martens
,
M.
, and
Mulier
,
C.
,
1977
, “
Influences of a Functional Dynamic Loading on Bone Ingrowth Into Surface Pores of Orthopaedic Implants
,”
J. Biomed. Mater. Res.
,
11
, pp.
811
838
.
3.
Pilliar
,
R. M.
,
Cameron
,
H. U.
,
Welsh
,
R. P.
, and
Binnington
,
A. G.
,
1981
, “
Radiographic and Morphologic Studies of Load-Bearing Porous-Surfaced Structured Implants
,”
Clin. Orthop. Relat. Res.
,
156
, pp.
249
257
.
4.
Bragdon
,
C. R.
,
Burke
,
D.
,
Lowenstein
,
J. D.
,
O’Connor
,
D. O.
,
Ramamurti
,
B.
,
Jasty
,
M.
, and
Harris
,
W. H.
,
1996
, “
Differences in Stiffness of the Interface Between a Cementless Porous Implant and Cancellous Bone in Vivo in Dogs Due to Varying Amounts of Implant Motion
,”
J. Arthroplasty
,
11
, pp.
945
951
.
5.
Jasty
,
M.
,
Bragdon
,
C. R.
,
Burke
,
D.
,
O’Connor
,
D.
,
Lowenstein
,
J.
, and
Harris
,
W.
,
1997
, “
In Vivo Skeletal Responses to Porous-Surfaced Implants Subjected to Small Induced Motions
,”
J. Bone Jt. Surg., Am. Vol.
,
79-A
, pp.
707
714
.
6.
Jasty
,
M.
,
Bragdon
,
C. R.
,
Zalenski
,
E.
,
O’Connor
,
D.
,
Page
,
A.
, and
Harris
,
W.
,
1997
, “
Enhanced Stability of Uncemented Canine Femoral Components by Bone Ingrowth Into the Porous Coatings
,”
J. Arthroplasty
,
12
, pp.
106
113
.
7.
Friedman
,
R. J.
,
Black
,
J.
,
Galante
,
J. O.
,
Jacobs
,
J. J.
, and
Skinner
,
H. B.
,
1993
, “
Current Concepts in Orthopaedic Biomaterials and Implant Fixation
,”
J. Bone Jt. Surg., Am. Vol.
,
75-A
, pp.
1086
1109
.
8.
Harris
,
W. H.
,
1995
, “
The Problem is Osteolysis
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
46
53
.
9.
Bechtold, J. E., Soballe, K., Kubic, V., Overgaard, S., Lewis, J. L., and Gustilo, R. B., 1997, “Synergy Between Implant Motion and Particulate Polyethylene in the Formation of an Aggressive Periprosthetic Membrane,” Trans. 43rd Annu. Meet. — Orthop. Res. Soc., p. 767.
10.
Kaiser
,
A. D.
, and
Whiteside
,
L. A.
,
1990
, “
The Effect of Screws and Pegs on the Initial Fixation Stability of an Uncemented Unicondylar Knee Replacement
,”
Clin. Orthop. Relat. Res.
,
259
, pp.
169
173
.
11.
Lee
,
R. W.
,
Volz
,
R. G.
, and
Sheridan
,
D. C.
,
1991
, “
The Role of Fixation and Bone Quality on the Mechanical Stability of Tibial Knee Components
,”
Clin. Orthop. Relat. Res.
,
273
, pp.
177
183
.
12.
Miura
,
H.
,
Whiteside
,
L. A.
,
Easley
,
J. C.
, and
Amador
,
D. D.
,
1990
, “
Effect of Screws and a Sleeve on Initial Fixation in Uncemented Total Knee Tibial Components
,”
Clin. Orthop. Relat. Res.
,
259
, pp.
160
168
.
13.
Summer, D. R., Berzins, A., and Turner, T. M., 1992, “Stability of the Tibial Tray in Cementless TKA: Initial Versus Late Post-Operative Motion,” Trans. 43rd Annu. Meet. — Orthop. Res. Soc., p. 268.
14.
Volz
,
R. G.
,
Nisbet
,
J. K.
,
Lee
,
R. W.
, and
McMurtry
,
M. G.
,
1988
, “
The Mechanical Stability of Various Noncemented Tibial Components
,”
Clin. Orthop. Relat. Res.
,
226
, pp.
38
42
.
15.
Wyatt
,
R. W. B.
,
Alpert
,
J. P.
,
Daniels
,
A. U.
,
Hofmann
,
A. A.
, and
Dunn
,
H. K.
,
1991
, “
The Effect of Screw Fixation on Initial Rigidity of Tibial Knee Components
,”
J. Appl. Biomater
,
2
, pp.
109
113
.
16.
Finlay
,
J. B.
,
Harada
,
I.
,
Bourne
,
R. B.
,
Rorabeck
,
C. H.
,
Hardie
,
R.
, and
Scott
,
M. A.
,
1989
, “
Analysis of the Pull-out Strength of Screws and Pegs Used to Secure Tibial Components Following Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
247
, pp.
220
231
.
17.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Zukor
,
J.
,
1994
, “
Fixation Pull-out Response Measurement of Bone Screws and Porous-Surfaced posts
,”
J. Biomech.
,
27
, pp.
1249
1258
.
18.
Hashemi
,
A.
, and
Shirazi-Adl
,
A.
,
2000
, “
Finite Element Analysis of Tibial Implants—Effect of Fixation Design and Friction Model
,”
Comp. Meth. Biomech. Biomed. Eng.
,
3
, pp.
183
201
.
19.
Keja
,
M.
,
Wevers
,
H. W.
,
Siu
,
D.
, and
Grootenboer
,
H.
,
1994
, “
Relative Motion at the Bone–Prosthesis Interface
,”
Clin. Biomech. (Los Angel. Calif.)
,
9
, pp.
275
283
.
20.
Rakotomanana
,
R. L.
,
Leyvraz
,
P. F.
,
Curnier
,
A.
,
Heegaard
,
J. H.
, and
Rubin
,
P. J.
,
1992
, “
A Finite Element Model for Evaluation of Tibial Prosthesis–Bone Interface in Total Knee Replacement
,”
J. Biomech.
,
25
, pp.
1413
1424
.
21.
Tissakht
,
A.
,
Eskandari
,
H.
, and
Ahmed
,
A. M.
,
1995
, “
Micromotion Analysis of the Fixation of Total Knee Tibial Component
,”
Comput. Struct.
,
56
, pp.
365
375
.
22.
Dammak
,
M.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997a
, “
Analysis of Cementless Implants Using Interface Nonlinear Friction—Experimental and Finite Element Studies
,”
J. Biomech.
,
30
, pp.
121
129
.
23.
Dammak
,
M.
,
Shirazi-Adl
,
A.
,
Schwartz
, Jr.,
M.
, and
Gustavson
,
L.
,
1997b
, “
Friction Properties at the Bone–Metal Interface—Comparison of Four Different Porous Metal Surfaces
,”
J. Biomed. Mater. Res.
,
35
, pp.
329
336
.
24.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Paiement
,
G.
,
1993
, “
Experimental Determination of Friction Characteristics at the Trabecular Bone/Porous-Coated Metal Interface in Cementless Implants
,”
J. Biomed. Mater. Res.
,
27
, pp.
167
175
.
25.
Hashemi
,
A.
,
Shirazi-Adl
,
A.
, and
Dammak
,
M.
,
1996
, “
Bi-directional Friction Study of Cancellous Bone-Porous Coated Metal Interface
,”
J. Biomed. Mater. Res.
,
33
, pp.
257
267
.
26.
Nissan
,
M.
,
1980
, “
Review of Some Basic Assumptions in Knee Biomechanics
,”
J. Biomech.
,
13
, pp.
375
381
.
27.
Shirazi-Adl
,
A.
, and
Forcione
,
A.
,
1992
, “
Finite Element Stress Analysis of a Push-Out Test — Part II: Free Interface With Nonlinear Friction Properties
,”
ASME J. Biomech. Eng.
,
114
, pp.
155
161
.
You do not currently have access to this content.