A three-dimensional, neuromusculoskeletal model of the body was combined with dynamic optimization theory to simulate normal walking on level ground. The body was modeled as a 23 degree-of-freedom mechanical linkage, actuated by 54 muscles. The dynamic optimization problem was to calculate the muscle excitation histories, muscle forces, and limb motions subject to minimum metabolic energy expenditure per unit distance traveled. Muscle metabolic energy was calculated by summing five terms: the basal or resting heat, activation heat, maintenance heat, shortening heat, and the mechanical work done by all the muscles in the model. The gait cycle was assumed to be symmetric; that is, the muscle excitations for the right and left legs and the initial and terminal states in the model were assumed to be equal. Importantly, a tracking problem was not solved. Rather, only a set of terminal constraints was placed on the states of the model to enforce repeatability of the gait cycle. Quantitative comparisons of the model predictions with patterns of body-segmental displacements, ground-reaction forces, and muscle activations obtained from experiment show that the simulation reproduces the salient features of normal gait. The simulation results suggest that minimum metabolic energy per unit distance traveled is a valid measure of walking performance.

1.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
, pp.
793
801
.
2.
Patriarco
,
A. B.
,
Mann
,
R. W.
,
Simon
,
S. R.
, and
Mansour
,
J. M.
,
1981
, “
An Evaluation of the Approaches of Optimization Methods in the Prediction of Muscle Forces During Human Gait
,”
J. Biomech.
,
14
, pp.
513
525
.
3.
Pedersen
,
D. R.
,
Brand
,
R. A.
, and
Davy
,
D. T.
,
1997
, “
Pelvic Muscle and Acetabular Contact Forces During Gait
,”
J. Biomech.
,
30
, pp.
959
965
.
4.
Glitsch
,
U.
, and
Baumann
,
W.
,
1997
, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
, pp.
1123
1131
.
5.
Davy
,
D. T.
, and
Audu
,
M. L.
,
1987
, “
A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait
,”
J. Biomech.
,
20
, pp.
187
201
.
6.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent
,”
J. Biomech.
,
34
, pp.
153
161
.
7.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1990
, “
Restoring Unassisted Natural Gait to Paraplegics Via Functional Neuromuscular Stimulation: A Computer Simulation Study
,”
IEEE Trans. Biomed. Eng.
,
37
, pp.
886
902
.
8.
Anderson
,
F. C.
,
Ziegler
,
J. M.
,
Pandy
,
M. G.
, and
Whalen
,
R. T.
,
1995
, “
Application of High-Performance Computing to Numerical Simulation of Human Movement
,”
ASME J. Biomech. Eng.
,
117
, pp.
155
157
.
9.
Chow
,
C. K.
, and
Jacobson
,
D. H.
,
1971
, “
Studies of Human Locomotion Via Optimal Programming
,”
Math. Biosci.
,
10
, pp.
239
306
.
10.
Anderson, F. C., 1999, “A Dynamic Optimization Solution for a Complete Cycle of Normal Gait,” Ph.D. thesis, The University of Texas at Austin, Austin, Texas.
11.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Meth. Biomech. Biomed. Eng.
,
2
, pp.
201
231
.
12.
McConville, J. T., Clauser, C. E., Churchill, T. D., Cuzzi, J., and Kaleps, I., 1980, “Anthropometric Relationships of Body and Body Segment Moments of Inertia,” Technical Report AFAMRL-TR-80-119, Air Force Aerospace Medical Research Laboratory, Wright-Patterson AFB, OH.
13.
Delp, S. L., 1990, “Surgery Simulation: A Computer Graphics System to Analyze and Design Musculoskeletal Reconstructions of the Lower Limb,” Ph.D. thesis, Stanford University, Stanford, CA.
14.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2000
, “
The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models
,”
Comput. Meth. Biomech. Biomed. Eng.
,
3
, pp.
1
30
.
15.
Zajac, F. E., 1989, “Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control,” CRC Critical Reviews in Biomedical Engineering, J. R. Bourne, ed., CRC Press, Baca Raton, Vol. 19, pp. 359–411.
16.
Ralston, H. J., 1976, “Energetics of Human Walking,” in: Neural Control of Locomotion, R. M. Herman et al., eds., Plenum Press, New York, pp. 77–98.
17.
Hatze
,
H.
, and
Buys
,
J. D.
,
1977
, “
Energy-Optimal Controls in the Mammalian Neuromuscular System
,”
Biol. Cybern.
,
27
, pp.
9
20
.
18.
Mommaerts
,
W. F.
,
1969
, “
Energetics of Muscular Contraction
,”
Physiol. Rev.
,
49
, pp.
427
508
.
19.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
114
, pp.
450
460
.
20.
Burdett
,
R. G.
,
Skrinar
,
G. S.
, and
Simon
,
S. R.
,
1983
, “
Comparison of Mechanical Work and Metabolic Energy Consumption During Normal Gait
,”
J. Orthop. Res.
,
1
, pp.
63
72
.
21.
Heglund
,
N. C.
, and
Cavagna
,
G. A.
,
1982
, “
Mechanical Work, Oxygen Consumption, and Efficiency in Isolated Frog and Rat Muscle
,”
Am. J. Physiol.
,
253
, pp.
C22–C29
C22–C29
.
22.
Saunders
,
J. B.
,
Inman
,
V. T.
, and
Eberhart
,
H. D.
,
1953
, “
The Major Determinants in Normal and Pathological Gait
,”
J. Bone Jt. Surg., Am. Vol.
,
35-A
, pp.
544
553
.
23.
Homsher
,
E.
,
Mommaerts
,
W. F. H. M.
, and
Ricchiuti
,
N. V.
,
1973
, “
Energetics of Shortening Muscles in Twitches and Tetanic Contractions. II. Force-Determined Shortening Heat
,”
J. Gen. Physiol.
,
62
, pp.
677
692
.
24.
Huijing
,
P. A.
,
1995
, “
Parameter Interdependence and Success of Skeletal Muscle Modeling
,”
Human Movement Sci.
,
14
, pp.
443
486
.
25.
Taga
,
G.
,
1995
, “
A Model of the Neuromusculoskeletal System for Human Locomotion: Emergence of Basic Gait
,”
Biol. Cybern.
,
73
, pp.
95
111
.
26.
Kaplan, M. L., and Heegaard, J. H., 1999, “Fast Optimal Control Solution Algorithm for Muscular Activity in Human Locomotion,” Proc. 1999 Bioengineering Conference, V. K. Goel et al., eds., ASME BED-Vol. 42, pp. 413–414.
27.
Pandy
,
M. G.
,
2001
, “
Computer Modeling and Simulation of Human Movement
,”
Ann. Rev. Biomed. Eng.
,
3
, pp.
245
273
.
28.
Rab, G. T., 1994, “Muscle,” in: Human Walking, J. Rose and J. G. Gamble, eds., Williams and Wilkins, Baltimore, pp. 103–121.
29.
Waters
,
R. L.
, and
Morris
,
J. M.
,
1972
, “
Electrical Activity of Muscles of the Trunk During Walking
,”
J. Anat.
,
111
, pp.
191
199
.
You do not currently have access to this content.