Computer simulations of orthopaedic devices can be prohibitively time consuming, particularly when assessing multiple design and environmental factors. Chang et al. (1999) address these computational challenges using an efficient statistical predictor to optimize a flexible hip implant, defined by a midstem reduction, subjected to multiple environmental conditions. Here, we extend this methodology by: (1) explicitly considering constraint equations in the optimization formulation, (2) showing that the optimal design for one environmental distribution is robust to alternate distributions, and (3) illustrating a sensitivity analysis technique to determine influential design and environmental factors. A thin midstem diameter with a short stabilizing distal tip minimized the bone remodeling signal while maintaining satisfactory stability. Hip joint force orientation was more influential than the effect of the controllable design variables on bone remodeling and the cancellous bone elastic modulus had the most influence on relative motion, both results indicating the importance of including uncontrollable environmental factors. The optimal search indicated that only 16 to 22 computer simulations were necessary to predict the optimal design, a significant savings over traditional search techniques.

1.
Davy, D. T., and Katoozian, H., 1994, “Three-Dimensional Shape Optimization of Femoral Components of Hip Prostheses With Frictional Interfaces,” Trans. Annu. Meet.—Orthop. Res. Soc., 19.
2.
de Beus
,
A. M.
,
Hoeltzel
,
D. A.
, and
Eftekhar
,
N. S.
,
1990
, “
Design Optimization of a Prosthesis Stem Reinforcing Shell in Total Hip Arthroplasty
,”
ASME J. Biomech. Eng.
,
112
, pp.
347
357
.
3.
Huiskes
,
R.
, and
Boeklagen
,
R.
,
1989
, “
Mathematical Shape Optimization of Hip Prosthesis Design
,”
J. Biomech.
,
22
, pp.
793
804
.
4.
Kuiper, J. H., 1993, “Numerical Optimization of Artificial Hip Joint Designs,” Ph.D. Thesis, University of Nijmegen, The Netherlands.
5.
Yong
,
S. Y.
,
Gun
,
H. J.
, and
Young
,
Y. K.
,
1989
, “
Shape Optimal Design of the Stem of a Cemented Hip Prosthesis to Minimize Stress Concentration in the Cement Layer
,”
J. Biomech.
,
22
, pp.
1279
1284
.
6.
Burke
,
D. W.
,
O’Connor
,
D. O.
,
Zalenski
,
E. B.
,
Jasty
,
M.
, and
Harris
,
W. H.
,
1991
, “
Micromotion of Cemented and Uncemented Femoral Components
,”
J. Bone Jt. Surg., Br. Vol.
,
73
, pp.
33
37
.
7.
Kotzar
,
G. M.
,
Davy
,
D. T.
,
Berilla
,
J.
, and
Goldberg
,
V. M.
,
1995
, “
Torsional Loads in the Early Postoperative Period Following Total Hip Replacement
,”
J. Orthop. Res.
,
13
, pp.
945
955
.
8.
Noble
,
P. C.
,
Alexander
,
J. W.
,
Lindahl
,
L. J.
,
Yew
,
D. T.
, and
Granberry
,
W. M.
,
1988
, “
The Anatomical Basis for Femoral Component Design
,”
J. Orthop. Res.
,
235
, pp.
148
165
.
9.
Chang
,
P. B.
,
Williams
,
B. J.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
,
1999
, “
Robust Optimization of Total Joint Replacements Incorporating Environmental Variables
,”
ASME J. Biomech. Eng.
,
121
, pp.
304
310
.
10.
Bernardo
,
M. C.
,
Buck
,
R.
,
Liu
,
L.
,
Nazaret
,
W. A.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
1992
, “
Integrated Circuit Design Optimization Using a Sequential Strategy
,”
IEEE Trans. Comput.-Aided Des.
,
11
, pp.
361
372
.
11.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
, pp.
239
245
.
12.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments (With Discussion)
,”
Stat. Sci.
,
4
, pp.
409
435
.
13.
Stein, M. L., 1999, Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York.
14.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
,
1992
, “
Screenign Predicting and Computer Experiments
,”
Technometrics
,
34
, pp.
15
25
.
15.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
, pp.
455
492
.
16.
Bobyn
,
J. D.
,
Mortimer
,
E. S.
,
Glassman
,
A. H.
,
Engh
,
C. A.
,
Miller
,
J. E.
, and
Brooks
,
C. E.
,
1992
, “
Producing and Avoiding Stress Shielding, Laboratory and Clinical Observations of Noncemented Total Hip Arthroplasty
,”
Clin. Orthop.
,
274
, pp.
79
96
.
17.
Engh
,
C. A.
, and
Bobyn
,
J. D.
,
1988
, “
The Influence of Stem Size and Extent of Porous Coating on Femoral Bone Resorption After Primary Cementless Hip Arthroplasty
,”
Clin. Orthop.
,
231
, pp.
7
28
.
18.
Engh
,
C. A.
,
McGovern
,
T. F.
,
Bobyn
,
J. D.
, and
Harris
,
W. H.
,
1992
, “
A Quantitative Evaluation of Periprosthetic Bone Remodeling After Cementless Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
,
77
, pp.
1009
1020
.
19.
Sumner
,
D. R.
,
Turner
,
T. M.
,
Urban
,
R. M.
, and
Galante
,
J. O.
,
1991
, “
Experimental Studies of Bone Remodeling in Total Hip Arthroplasty
,”
Clin. Orthop.
,
276
, pp.
83
90
.
20.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop.
,
274
, pp.
124
134
.
21.
Karrholm
,
J.
,
Borssen
,
B.
,
Lowenhielm
,
G.
, and
Snorrason
,
F.
,
1994
, “
Does Early Micromotion of Femoral Stem Prostheses Matter? 4-7 Year Stereoradiographic Follow-up of 84 Cemented Prostheses
,”
J. Bone Jt. Surg., Br.
,
1.76
, pp.
912
917
.
22.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
,
1986
, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop.
,
208
, pp.
108
113
.
23.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Paiement
,
G.
,
1993
, “
Experimental Determination of Friction Characteristics as the Trabecular Bone/Porous-Coated Metal Interface in Cementless Implants
,”
J. Biomech.
,
27
, pp.
167
175
.
24.
Paul, J. P., 1967, “Forces at the Human Hip,” Ph.D. Thesis, University of Glasgow, Scotland.
25.
Keaveny
,
T. M.
, and
Bartel
,
D. L.
,
1993
, “
Effects of Porous Coating, Wth and Without Collar Support, on Early Relative Motion for a Cementless Hip Prosthesis
,”
J. Biomech.
,
26
, pp.
1355
1368
.
26.
Williams, B. J., Santner, T. J., and Notz, W. I., 2000, “Sequential Design of Computer Experiments to Minimize Integrated Response Functions,” Statistical Sinica, in press.
27.
Keaveny, T. M., 1991, “A Finite Element Analysis of Load Transfer and Relative Motion for Contemporary Cementless Hip Implants in the Short and Long-Terms,” Ph.D. Thesis, Cornell University, Ithaca, NY.
You do not currently have access to this content.