Micro-finite element (μFE) models based on high-resolution images have enabled the calculation of elastic properties of trabecular bone in vitro. Recently, techniques have been developed to image trabecular bone structure in vivo, albeit at a lesser resolution. The present work studies the usefulness of such in-vivo images for μFE analyses, by comparing their μFE results to those of models based on high-resolution micro-CT (μCT) images. Fifteen specimens obtained from human femoral heads were imaged first with a 3D-pQCT scanner at 165 μm resolution and a second time with a μCT scanner at 56 μm resolution. A third set of images with a resolution of 165 μm was created by downscaling the μCT measurements. The μFE models were created directly from these images. Orthotropic elastic properties and the average tissue von Mises stress of the specimens were calculated from six FE-analyses per specimen. The results of the 165 μm models were compared to those of the 56 μm model, which was taken as the reference model. The results calculated from the pQCT-based models, correlated excellent with those calculated from the reference model for both moduli R2>0.95 and for the average tissue von Mises stress R2>0.83. Results calculated from the downscaled micro-CT models correlated even better with those of the reference models (R2>0.99 for the moduli and R2>0.96 for the average von Mises stress). In the case of the 3D-pQCT based models, however, the slopes of the regression lines were less than one and had to be corrected. The prediction of the Poisson’s ratios was less accurate (R2>0.45 and R2>0.67) for the models based on 3D-pQCT and downscaled μCT images respectively). The fact that the results from the downscaled and original μCT images were nearly identical indicates that the need for a correction in the case of the 3D-pQCT measurements was not due to the voxel size of the images but due to a higher noise level and a lower contrast in these images, in combination with the application of a filtering procedure at 165 micron images. In summary: the results of μFE models based on in-vivo images of the 3D-pQCT can closely resemble those obtained from μFE models based on higher resolution μCT system.

1.
Melton
,
I. J.
,
Kan
,
S. H.
,
Frye
,
M. A.
,
Wahner
,
H. W.
,
O’Fallon
,
W. M.
, and
Riggs
,
B. L.
,
1989
, “
Epidemiology of Vertebral Fractures in Women
,”
Am. J. Epidemiol.
,
129
, pp.
1000
1012
.
2.
Ru¨egsegger, P., 1996, “Bone Density Measurements,” Osteoporosis: A Guide to Diagnosis and Treatment, S. Broll and S. Dambacher, eds., Karger, Basel, pp. 103–116.
3.
Ahmed
,
A. I.
,
Blake
,
G. M.
,
Rymer
,
J. M.
, and
Fogelman
,
I.
,
1997
, “
Screening for Osteopenia and Osteoporosis: Do to Accepted Normal Ranges Lead to Overdiagnosis?
Osteoporosis Int.
,
7
, pp.
432
438
.
4.
Parfitt
,
A. M.
,
1992
, “
Implication of Architecture for the Pathogenesis and Prevention of Vertebral Fracture
,”
Bone
,
13
, pp.
41
47
.
5.
Snyder
,
B. D.
,
Piazza
,
S.
,
Edwards
,
W. T.
, and
Hayes
,
W. C.
,
1993
, “
Role of Trabecular Morphology in the Etiology of Age-Related Vertebral Fractures
,”
Calcif. Tissue Int.
,
53
-
S1
, pp.
14
22
.
6.
Cooper
,
C.
,
1993
, “
The Epidemiology of Fragility Fractures: Is There a Role for Bone Quality?
Calcif. Tissue Int.
,
53
-
S1
, pp.
23
26
.
7.
Johnston
,
C. C.
, and
Slemenda
,
C. W.
,
1995
, “
Pathogenesis of Osteoporosis
,”
Bone
,
17
, pp.
19
22
.
8.
Ulrich
,
D.
,
van Rietbergen
,
B.
,
Laib
,
A.
, and
Ru¨egsegger
,
P.
,
1999
, “
The Ability of 3-D Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,”
Bone
,
25
-
1
, pp.
55
60
.
9.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
,
1994
, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
,
27
-
4
, pp.
433
444
.
10.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
-
12
, pp.
1653
1657
.
11.
Ladd
,
A. J.
,
Kinney
,
J. H.
,
Haupt
,
D. L.
, and
Goldstein
,
S. A.
,
1998
, “
Finite-Element Modeling of Trabecular Bone: Comparison With Mechanical Testing and Determination of Tissue Modulus
,”
J. Orthop. Res.
,
16
, pp.
622
628
.
12.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
,
Odgaard
,
A.
, and
Huiskes
,
R.
,
1999
, “
The Role of an Effective Isotropic Tissue Modulus in the Elastic Properties of Cancellous Bone
,”
J. Biomech.
,
32
-
7
, pp.
589
618
.
13.
van Rietbergen, B., Kabel, J., Odgaard, A., and Huiskes, R., 1997, “Determination of Trabecular Bone Tissue Elastic Properties by Comparison of Experimental and Finite Element Results,” Material Identification Using Mixed Numerical Experimental Methods, H. Sol and C. W. J. Oomens, eds., Kluwer Academic, Dordrecht, The Netherlands.
14.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
, pp.
1009
1015
.
15.
Feldcamp
,
L. A.
,
Goldstein
,
S. A.
,
Parfin
,
A. M.
,
Jesion
,
G.
, and
Kleerekoper
,
M.
,
1989
, “
The Direct Examination of Three-Dimensional Bone Architecture In Vitro by Computed Tomography
,”
J. Bone Miner. Res.
,
4
, pp.
3
11
.
16.
Ru¨egsegger
,
P.
,
Koller
,
B.
, and
Mu¨ller
,
R.
,
1996
, “
A Microtomographic System for the Non-Destructive Evaluation of Bone Architecture
,”
Calcif. Tissue Int.
,
58
, pp.
24
29
.
17.
Bonse
,
U.
,
Busch
,
F.
,
Gunnewig
,
O.
,
Beckmann
,
F.
,
Pahl
,
R.
,
Delling
,
G.
,
Hahn
,
M.
, and
Graeff
,
W.
,
1994
, “
3D Computed X-Ray Tomography of Human Cancellous Bone at 8 Microns Spatial and 10(-4) Energy Resolution
,”
Bone Miner.
,
25
, pp.
25
38
.
18.
Odgaard
,
A.
,
Andersen
,
K.
,
Melsen
,
F.
, and
Gundersen
,
H. J. G.
,
1990
, “
A Direct Method for Fast Three-Dimensional Serial Reconstruction
,”
J. Microsc.
,
159
, pp.
335
342
.
19.
Beck
,
J. D.
,
Canfield
,
B. L.
,
Haddock
,
S. M.
,
Chen
,
T. J.
,
Kothary
,
M.
, and
Keaveny
,
T. M.
,
1997
, “
Three Dimensional Imaging of Trabecular Bone Using the Computer Numerically Controlled Milling Technique
,”
Bone
,
21
-
3
, pp.
281
287
.
20.
Laib
,
A.
,
Hildebrand
,
T.
,
Ha¨uselmann
,
H. J.
, and
Ru¨egsegger
,
P.
,
1997
, “
Ridge Number Density: A New Parameter for In Vivo Bone Structure Analysis
,”
Bone
,
21
, pp.
541
546
.
21.
Majumdar
,
S.
,
Newitt
,
D.
,
Mathur
,
A.
,
Osman
,
D.
,
Gies
,
A.
,
Chiu
,
E.
,
Lotz
,
J.
,
Kinney
,
J.
, and
Genant
,
H.
,
1996
, “
Magnetic Resonance Imaging of Trabecular Bone Structure in the Distal Radius: Relationship With X-Ray Tomographic Microscopy and Biomechanics
,”
Osteoporos. Int.
,
6
, pp.
376
385
.
22.
Wehrli
,
F. W.
,
Hwang
,
S. N.
,
Ma
,
J.
,
Song
,
H. K.
,
Ford
,
J. C.
, and
Haddad
,
J. G.
,
1998
, “
Cancellous Bone Volume and Structure in the Forearm: Noninvasive Assessment With MR Microimaging And Image Processing
,”
Radiology
,
206
-
2
, pp.
347
357
.
23.
Mu¨ller
,
R.
,
Hildebrand
,
T.
, and
Ru¨egsegger
,
P.
,
1994
, “
Non-Invasive Bone Biopsy: A New Method to Analyze and Display the Three-Dimensional Structure of Trabecular Bone
,”
Phys. Med. Biol.
,
39
, pp.
145
164
.
24.
Ulrich, D., van Rietbergen, B., Laib, A., and Ru¨egsegger, P., 1998, “Bone Density and Microstructure—New Methods to Determine Bone Quality and Fracture Risk,” Computer Methods in Biomechanics & Biomedical Engineering—2, J. Middleton, M. L. Jones, and G. N. Pande, eds., pp. 221–229.
25.
Laib
,
A.
, and
Ru¨egsegger
,
P.
,
1999
, “
Calibration of Trabecular Bone Structure Measurements of a In Vivo 3D-QCT With a 28 μm MicroCT
,”
Bone
,
24
, No.
1
, pp.
35
39
.
26.
Ladd
,
A. J.
, and
Kinney
,
J. H.
,
1998
, “
Numerical Errors and Uncertainties in Finite-Element Modeling of Trabecular Bone
,”
J. Biomech.
,
31
, pp.
941
945
.
27.
Ulrich
,
D.
,
van Rietbergen
,
B.
,
Weinans
,
H.
, and
Ru¨egsegger
,
P.
,
1998
, “
Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques
,”
J. Biomech.
,
31
, pp.
1187
1192
.
28.
van Rietbergen
,
B.
,
Majumdar
,
W.
,
Pistoia
,
D. C.
,
Newitt
,
M.
,
Kothari
,
A.
,
Laib
,
A.
, and
Ru¨egsegger
,
P.
,
1998
, “
Assessment of Cancellous Bone Mechanical Properties From Micro-FE Models Based on Micro-CT, pQCT and MR Images
,”
Technol. Health Care
,
6
, pp.
413
420
.
29.
Laib
,
A.
, and
Ru¨egsegger
,
P.
,
1999
, “
Comparison of Structure Extraction Methods for In Vivo Trabecular Bone Measurements
,”
Comput. Med. Imaging Graph.
,
23
-
2
, pp.
69
74
.
30.
van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
,
28
-
1
, pp.
69
81
.
31.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone Are Closely Related
,”
J. Biomech.
,
30
-
5
, pp.
487
495
.
32.
Kothari
,
M.
,
Keaveny
,
T. M.
,
Lin
,
J. C.
,
Newitt
,
D. C.
,
Genant
,
H. K.
, and
Majumdar
,
S.
,
1998
, “
Impact of Spatial Resolution on the Prediction of Trabecular Architecture Parameters
,”
Bone
,
22
-
5
, pp.
437
443
.
33.
Yang
,
G.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Huiskes
,
R.
, and
Cowin
,
S. C.
,
1999
, “
The Anisotropic Hooke’s Law for Cancellous Bone
,”
J. Elast.
,
53
, pp.
125
146
.
You do not currently have access to this content.