Previous studies of the hydraulic conductivity of connective tissues have failed to show a correspondence between ultrastructure and specific hydraulic conductivity. We used the technique of quick-freeze/deep-etch to examine the ultrastructure of the corneal stroma and then utilized morphometric studies to compute the specific hydraulic conductivity of the corneal stroma. Our studies demonstrated ultrastructural elements of the extracellular matrix of the corneal stroma that are not seen using conventional electron microscopic techniques. Furthermore, we found that these structures may be responsible for generating the high flow resistance characteristic of connective tissues. From analysis of micrographs corrected for depth-of-field effects, we used Carmen-Kozeny theory to bound a morphometrically determined specific hydraulic conductivity of the corneal stroma between 0.46×1014 and 10.3×1014cm2. These bounds encompass experimentally measured values in the literature of 0.5×1014 to 2×1014cm2. The largest source of uncertainty was due to the depth-of-field estimates that ranged from 15 to 51 nm; a better estimate would substantially reduce the uncertainty of these morphometrically determined values.

1.
Knight
,
A. D.
, and
Levick
,
J. R.
,
1985
, “
Effect of Fluid Pressure on the Hydraulic Conductance of Interstitium and Fenestrated Endothelium in the Rabbit Knee
,”
J. Physiol. (London)
,
360
, pp.
311
332
.
2.
Urban
,
J. P. G.
, and
Maroudas
,
A.
,
1980
, “
The Chemistry of the Intervertebral in Relation to its Physiological Function and Requirements
,”
Clin. Rheum. Dis.
,
6
, pp.
51
76
.
3.
Daniels
,
B. S.
,
Hauser
,
E. B.
,
Deen
,
W. N.
, and
Hostetter
,
T. H.
,
1992
, “
Glomerular Basement Membrane: in Vitro Studies of Water and Protein Permeability
,”
Am. J. Physiol.
,
262
, pp.
F919–F926
F919–F926
.
4.
Bito, L. Z., Davson, H., and Fenstermacher, J. D., 1977, The Ocular and Cerebrospinal Fluids, Academic Press, London, New York, San Francisco.
5.
Ethier
,
C. R.
,
Kamm
,
R. D.
,
Palaszewski
,
B. A.
,
Johnson
,
M. C.
, and
Richardson
,
T. M.
,
1986
, “
Calculations of Flow Resistance in the Juxtacanalicular Meshwork
,”
Invest. Ophthalmol. Visual Sci.
,
27
, pp.
1741
1750
.
6.
Levick
,
J. R.
,
1987
, “
Flow Through Interstitium and Other Fibrous Matrices
,”
Q. J. Exp. Physiol.
,
72
, pp.
409
437
.
7.
Hascall, V. C., and Hascall, G. K., 1982, “Proteoglycans,” Cell Biology of Extracellular Matrix, E. D. Hay, ed., Plenum Press, New York, pp. 39–63.
8.
Mecham
,
R. P.
, and
Heuser
,
J.
,
1990
, “
Three-Dimensional Organization of Extracellular Matrix in Elastic Cartilage as Viewed by Quick Freeze, Deep Etch Electron Microscopy
,”
Connect. Tissue Res.
,
24
, pp.
83
93
.
9.
Hedbys
,
B. O.
, and
Mishima
,
S.
,
1962
, “
Flow of Water in Corneal Stroma
,”
Exp. Eye Res.
,
1
, pp.
262
275
.
10.
Hedbys
,
B. O.
,
1963
, “
Corneal Resistance to the Flow of Water After Enzymatic Digestion
,”
Exp. Eye Res.
,
2
, pp.
112
121
.
11.
Hedbys, B. O., and Mishima, S., 1969, “The Flow of Water Across the Corneal Layers,” The Cornea, Macromolecular Organization of a Connective Tissue, M. Langham, ed., Johns Hopkins, Baltimore, pp. 69–77.
12.
Fatt
,
I.
, and
Hedbys
,
B. O.
,
1970
, “
Flow Conductivity of Human Corneal Stoma
,”
Exp. Eye Res.
,
10
, pp.
237
242
.
13.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1987
, “
The Kinetics of Chemically Induced Nonequilibrium Swelling of Articular Cartilage and Corneal Stroma
,”
J. Biomech. Eng.
,
109
, pp.
79
89
.
14.
Carmen
,
P. C.
,
1937
, “
Fluid Flow Through Granular Beds
,”
Trans. Inst. Chem. Eng.
,
15
, pp.
150
166
.
15.
Ethier, C. R., 1983, “Hydrodynamics of Flow Through Gels With Applications to the Eye,” Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
16.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
17.
Happel, J., and Brenner, H., 1983, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, Hague, Netherlands.
18.
Ghaddar
,
C. K.
,
1995
, “
On the Permeability of Unidirectional Fibrous Media: A Parallel Computational Approach
,”
Phys. Fluids
,
7
, pp.
2563
2586
.
19.
Meek
,
K.
,
Fullwood
,
N.
,
Cooke
,
P.
,
Elliot
,
G.
,
Maurice
,
D.
,
Quantock
,
A.
,
Wall
,
R.
, and
Worthington
,
C.
,
1991
, “
Synchrotron X-Ray Diffraction Studies of the Cornea, With Implications for Stromal Hydration
,”
Biophys. J.
,
60
, pp.
467
474
.
20.
Ethier
,
C. R.
,
1991
, “
Flow Through Mixed Fibrous Porous Materials
,”
AIChE J.
,
37
, pp.
1227
1236
.
21.
Paleszewski, B., 1983, Analytical Studies of Flow Through a Porous Medium With Applications to the Trabecular Meshwork of the Eye, Massachusetts Institute of Technology, Cambridge, MA.
22.
Miles, R. E., 1975, “On Estimating Aggregate and Overall Characteristics From Thick Sections by Transmission Electron Microscopy,” Proceedings of the Fourth International Congress for Stereology, National Bureau of Standards Special Publications, Gaithersburg, MD.
23.
Underwood, E. E., 1970, Quantitative Stereology, Addison-Wesley, Reading, MA.
24.
Delesse
,
A.
,
1848
, “
Pour Determiner la Composition des Roches
,”
Ann. Mines
,
13
, pp.
379
388
.
25.
Saltykov, S. A., 1958, Stereometric Metallography, Metallurgizdat, Moscow.
26.
Hirsch
,
M.
,
Nicholas
,
G.
, and
Pouliquen
,
Y.
,
1989
, “
Interfibrillar Structures in Fast-Frozen, Deep-Etched and Rotary-Shadowed Extracellular Matrix of Rabbit Corneal Stroma
,”
Exp. Eye Res.
,
49
, pp.
311
315
.
27.
Yamabayashi
,
S.
,
Ohno
,
S.
,
Aguilar
,
R. N.
,
Furuya
,
T.
,
Hosoda
,
M.
, and
Tsukahara
,
S.
,
1991
, “
Ultrastructural Studies of Collagen Fibers of the Cornea and Sclera by a Quick-Freezing and Deep-Etching Method
,”
Ophthalmic Res.
,
23
, pp.
320
329
.
28.
Huang
,
Y.
,
Rumschitzki
,
D.
,
Chien
,
S.
, and
Weinbaum
,
S.
,
1994
, “
A Fiber Matrix Model for the Growth of Macromolecular Leakage Spots in the Arterial Intima
,”
J. Biomech. Eng.
,
116
, pp.
430
445
.
29.
Huang
,
Y.
,
Rumschitzki
,
D.
,
Chien
,
S.
, and
Weinbaum
,
S.
,
1997
, “
A Fiber Matrix Model for the Filtration Through Fenestral Pores in a Compressible Arterial Intima
,”
Am. J. Physiol.
,
272
, pp.
H2023–H2039
H2023–H2039
.
30.
Comper
,
W. D.
, and
Laurent
,
T. C.
,
1978
, “
Physiological Function of Connective Tissue Polysaccharides
,”
Physiol. Rev.
,
58
, pp.
255
315
.
31.
Hirsch
,
M.
,
Noske
,
W.
,
Prenant
,
G.
, and
Renard
,
G.
,
1999
, “
Fine Structure of the Developing Avian Corneal Stroma as Revealed by Quick-Freeze/Deep-Etch Electron Microscopy
,”
Exp. Eye Res.
,
69
, pp.
267
277
.
32.
Anseth
,
A.
, and
Laurent
,
T.
,
1961
, “
Studies on Corneal Polysaccharides. I. Separation.
,”
Exp. Eye Res.
,
1
, pp.
25
38
.
33.
Axelsson
,
I.
, and
Heinegard
,
D.
,
1975
, “
Fractionation of Proteoglycans From Bovine Corneal Stroma
,”
Biochem. J.
,
145
, pp.
491
500
.
34.
Zimmermann
,
D.
,
Trueb
,
B.
,
Winterhalter
,
K.
,
Witmer
,
R.
, and
Fischer
,
R.
,
1986
, “
Type VI Collagen Is a Major Component of the Human Cornea
,”
FEBS Lett.
,
197
, pp.
55
58
.
35.
Rawe
,
I.
,
Zhan
,
Q.
,
Burrows
,
R.
,
Bennet
,
K.
, and
Cintron
,
C.
,
1997
, “
Beta-ig. Molecular Cloning and In Situ Hybridization in Corneal Tissues
,”
Invest. Ophthalmol. Visual Sci.
,
38
, pp.
893
901
.
36.
Craig
,
A.
,
Robertson
,
J.
, and
Parry
,
D.
,
1986
, “
Preservation of Corneal Collagen Fibril Structure Using Low-Temperature Procedures for Electron Mmicroscopy
,”
J. Ultrastruct Mol. Struct. Res.
,
96
, pp.
172
175
.
37.
Fullwood
,
N.
, and
Meek
,
K.
,
1993
, “
A Synchroton X-Ray Study of the Changes Occurring in the Corneal Stroma During Processing for Electron Microscopy
,”
J. Microsc.
,
169
, pp.
53
60
.
38.
Murata
,
Y.
,
Yoshioka
,
H.
,
Iyama
,
K.
, and
Usuku
,
G.
,
1989
, “
Distribution of Type VI Collagen in the Bovine Cornea
,”
Ophthalmic Res.
,
21
, pp.
67
72
.
39.
Marshall
,
G. E.
,
A. G.
,
K.
, and
W.R.
,
L.
,
1991
, “
Immunogold Fine Structural Localization of Extracellular Matrix Components in Aged Human Cornea. II. Collagen Types V and VI
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
,
229
, pp.
164
171
.
40.
Hill
,
R.
, and
Power
,
G.
,
1956
, “
Extremum Principles for Slow Viscous Flow and the Approximate Calculation of Drag
,”
Q. J. Mech. Appl. Math.
,
9
, pp.
310
319
.
41.
Mishima
,
S.
, and
Maurice
,
D.
,
1961
, “
The Oily Layer of the Tear Film and Evaporation From the Corneal Surface
,”
Exp. Eye Res.
,
1
, pp.
39
45
.
42.
Wiig
,
H.
,
1990
, “
Cornea Fluid Dynamics II. Evidence for Transport of Radiolabelled Albumin in Rabbits by Bulk Flow
,”
Exp. Eye Res.
,
50
, pp.
261
267
.
43.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
, p.
377
377
.
44.
Bill, A., 1984, “Circulation in the Eye,” Microcirculation, Part 2, E. M. Renkin and C. C. Michel, eds., American Physiological Society, Baltimore, MD, IV, p. 1076.
45.
Fatt, I., 1978, Physiology of the Eye: An Introduction to the Vegetative Functions, Butterworth, Boston, MA.
46.
Starita
,
C.
,
Hussain
,
A.
,
Pagliarini
,
S.
, and
Marshall
,
J.
,
1996
, “
Hydrodynamics of Aging Bruch’s Membrane: Implications for Macular Disease
,”
Exp. Eye Res.
,
62
, pp.
565
572
.
47.
Robinson
,
W.
,
Kador
,
P.
, and
Kinoshita
,
J.
,
1983
, “
Retinal Capillaries: Basement Membrane Thickening by Galactosemia Prevented With Aldose Reductase Inhibitor
,”
Science
,
221
, pp.
1177
1179
.
48.
Drumond
,
M.
, and
Deen
,
W.
,
1994
, “
Stokes Flow Through a Row of Cylinders Between Parallel Walls: Model for the Flomerular Slit Diaphragm
,”
J. Biomech. Eng.
,
116
, pp.
184
189
.
49.
Cauchy, A., 1908, Oeuvres Completes d’Augustin Cauchy, Gauthier-Villars, Paris.
50.
Vouk
,
V.
,
1948
, “
Projected Area of Convex Bodies
,”
Nature (London)
,
162
, p.
330
330
.
You do not currently have access to this content.