Computational techniques are widely used for studying large artery hemodynamics. Current trends favor analyzing flow in more anatomically realistic arteries. A significant obstacle to such analyses is generation of computational meshes that accurately resolve both the complex geometry and the physiologically relevant flow features. Here we examine, for a single arterial geometry, how velocity and wall shear stress patterns depend on mesh characteristics. A well-validated Navier-Stokes solver was used to simulate flow in an anatomically realistic human right coronary artery (RCA) using unstructured high-order tetrahedral finite element meshes. Velocities, wall shear stresses (WSS), and wall shear stress gradients were computed on a conventional “high-resolution” mesh series (60,000 to 160,000 velocity nodes) generated with a commercial meshing package. Similar calculations were then performed in a series of meshes generated through an adaptive mesh refinement (AMR) methodology. Mesh-independent velocity fields were not very difficult to obtain for both the conventional and adaptive mesh series. However, wall shear stress fields, and, in particular, wall shear stress gradient fields, were much more difficult to accurately resolve. The conventional (nonadaptive) mesh series did not show a consistent trend towards mesh-independence of WSS results. For the adaptive series, it required approximately 190,000 velocity nodes to reach an r.m.s. error in normalized WSS of less than 10 percent. Achieving mesh-independence in computed WSS fields requires a surprisingly large number of nodes, and is best approached through a systematic solution-adaptive mesh refinement technique. Calculations of WSS, and particularly WSS gradients, show appreciable errors even on meshes that appear to produce mesh-independent velocity fields.

1.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Prakash
,
S.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
,
1999
, “
A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses
,”
J. Biomech. Eng.
,
121
, pp.
265
272
.
2.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
, pp.
155
196
.
3.
Hofer
,
M.
,
Rappitsch
,
G.
,
Perktold
,
K.
,
Trubel
,
W.
, and
Schima
,
H.
,
1996
, “
Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia
,”
J. Biomech.
,
29
, pp.
1297
1308
.
4.
Noori
,
N.
,
Scherer
,
R.
,
Perktold
,
K.
,
Czerny
,
M.
,
Karner
,
G.
,
Trubel
,
M.
,
Polterauer
,
P.
, and
Schima
,
H.
,
1999
, “
Blood Flow in Distal End-to-Side Anastomoses With PTFE and a Venous Patch: Results of an In Vitro Flow Visualization Study
,”
Eur. J. Vasc. Endovasc Surg.
,
18
, pp.
191
200
.
5.
Botnar
,
R.
,
Rappitsch
,
G.
,
Scheidegger
,
M. B.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
,
2000
, “
Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and In Vitro MRI Measurements
,”
J. Biomech.
,
33
, pp.
137
144
.
6.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
,
1997
, “
Hemodynamic Simulations and Computer-Aided Designs of Graft-Artery Junctions
,”
J. Biomech. Eng.
,
119
, pp.
343
348
.
7.
Long
,
Q.
,
Xu
,
X. Y.
,
Bourne
,
M.
, and
Griffith
,
T. M.
,
2000
, “
Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated From MRI Data
,”
Magn. Reson. Med.
,
43
, pp.
565
576
.
8.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
, pp.
975
984
.
9.
Liu
,
H.
, and
Yamaguchi
,
T.
,
1999
, “
Computer Modeling of Fluid Dynamics Related to a Myocardial Bridge in a Coronary Artery
,”
Biorheology
,
36
, pp.
373
390
.
10.
Shipkowitz
,
T.
,
Rodgers
,
V. G.
,
Frazin
,
L. J.
, and
Chandran
,
K. B.
,
2000
, “
Numerical Study on the Effect of Secondary Flow in the Human Aorta on Local Shear Stresses in Abdominal Aortic Branches
,”
J. Biomech.
,
33
, pp.
717
728
.
11.
Migliavacca
,
F.
,
Yates
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
, and
de Leval
,
M. R.
,
2000
, “
Calculating Blood Flow From Doppler Measurements in the Systemic-to-Pulmonary Artery Shunt After the Norwood Operation: A Method Based on Computational Fluid Dynamics
,”
Ultrasound Med. Biol.
,
26
, pp.
209
219
.
12.
Freitas
,
C. J.
,
1993
, “
Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
115
, pp.
339
340
.
13.
Roache, P. J., 1998, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, NM.
14.
Steinman
,
D. A.
,
Frayne
,
R.
,
Zhang
,
X. D.
,
Rutt
,
B. K.
, and
Ethier
,
C. R.
,
1996
, “
MR Measurement and Numerical Simulation of Steady Flow in an End-to-Side Anastomosis Model
,”
J. Biomech.
,
29
, pp.
537
542
.
15.
Sun
,
Y.
,
Hearshen
,
O. O.
,
Rankin
,
G. W.
, and
Haggar
,
A. M.
,
1992
, “
Comparison of Velocity-Encoded MR Imaging and Fluid Dynamic Modeling of Steady and Disturbed Flow
,”
J. Magn. Reson. Imaging
,
2
, pp.
443
452
.
16.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. G.
, and
Ojha
,
M.
,
2000
, “
Steady Flow Separation Patterns in a 45 Degree Junction
,”
J. Fluid Mech.
,
411
, pp.
1
38
.
17.
Fearn
,
M.
,
Mullin
,
T.
, and
Cliffe
,
K. A.
,
1990
, “
Nonlinear Flow Phenomenon in a Symmetric Sudden Expansion
,”
J. Fluid Mech.
,
211
, pp.
595
608
.
18.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G. A.
,
1995
, “
Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries
,”
J. Biomech. Eng.
,
117
, pp.
350
357
.
19.
Lei
,
M.
,
Archie
,
J. P.
, and
Kleinstreuer
,
C.
,
1997
, “
Computational Design of a Bypass Graft That Minimizes Wall Shear Stress Gradients in the Region of the Distal Anastomosis
,”
J. Vasc. Surg.
,
25
, pp.
637
646
.
20.
Moore
,
J. A.
,
Rutt
,
B. K.
,
Karlik
,
S. J.
,
Yin
,
K.
, and
Ethier
,
C. R.
,
1999
, “
Computational Blood Flow Modeling Based on In Vivo Measurements
,”
Ann. Biomed. Eng.
,
27
, pp.
627
640
.
21.
Myers, J. G., Moore, J. A., Ojha, M., Johnston, K. W., and Ethier, C. R., 2000, “Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery,” submitted to Ann. Biomed. Eng.
22.
Maday
,
Y.
,
Patera
,
A. T.
, and
Rønquist
,
E. M.
,
1990
, “
An Operator-Integration-Factor Splitting Method for Time-Dependent Problems: Application to Incompressible Fluid Flow
,”
J. Sci. Comput.
,
5
, pp.
263
292
.
23.
Minev
,
P. D.
, and
Ethier
,
C. R.
,
1999
, “
A Characteristic/Finite Element Algorithm for the 3-D Navier–Stokes Equations Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
,
178
, pp.
39
50
.
24.
Ethier, C. R., Steinman, D. A., and Ojha, M., 1999, “Comparisons Between Computational Hemodynamics, Photochromic Dye Flow Visualization and MR Velocimetry, in: The Haemodynamics of Internal Organs–Comparison of Computational Predictions With In Vivo and In Vitro Data, X. Y. Xu and M. W. Collins, eds., Computational Mechanics Publications, Ashurst, UK.
25.
Prakash, S., 1999, “Adaptive Mesh Refinement for Finite Element Flow Modeling in Complex Geometries,” Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto.
26.
Prakash, S., and Ethier, C. R., 2001, “Enhanced Error Estimator for Adaptive Finite Element Analysis of 3D Incompressible Flow,” in press, Comput. Methods Appl. Mech. Eng.
27.
Ethier
,
C. R.
, and
Steinman
,
D. A.
,
1994
, “
Exact Fully 3D Navier–Stokes Solutions for Benchmarking
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
369
375
.
You do not currently have access to this content.