The topic of this study mainly concerns a representative model of the behavior of flexible ducts such as elastic tubes or veins. This model is based on a phenomenological approach of the inflation and collapse of the tube. It leads to a single “universal” analytical expression of the tube law, valid for a wide range of positive and negative transmural pressures, which presents a significant improvement compared to previous theoretical studies defined with different expressions on restricted ranges of pressure. Moreover, the theoretical approaches most often require simplifying hypotheses—no longitudinal tension, no surrounding tissues—which are quite unrealistic both in the physiological case and in the experimental setup. These theoretical models can therefore be expected only roughly to describe the actual behavior of such vessels. The representative model, on the contrary, allows one to account for the deformation—inflating as well as collapse—of elastic tubes or veins with better accuracy. The tube law is a function of six parameters chosen in order to fit the experimental data. A comparison between results obtained in our laboratory using silicone tubes and representative models is presented. The model is then applied to physiological data obtained in vivo on human leg veins.

1.
Sigel
,
B.
,
Edelstein
,
A. L.
, and
Savitch
,
L.
,
1975
, “
Type of Compression for Reducing Venous Stasis. A Study of Lower Extremities During Inactive Recumbency
,”
Arch. Surg.
,
110
, pp.
171
176
2.
Zicot
,
M.
,
Parker
,
K. H.
, and
Caro
,
C. G.
,
1977
, “
Effects of Positive External Pressure on Calf Volume and Local Venous Haemodynamics
,”
Phys. Med. Biol.
,
22
, No.
6
, pp.
1146
1159
.
3.
Arcelus
,
J. I.
,
Caprini
,
J. A.
,
Traverso
,
C. I.
,
Size
,
G.
, and
Hasty
,
J. H.
,
1993
., “
The Role of Elastic Compression Stockings in Prevention of Venous Dilatation Induced by Reverse Trendelenburg Position
,”
Phlebologie
,
8
, pp.
111
115
.
4.
Caro, C. G., and Pedley, T. J., “The Mechanics of the Circulation,” in: SolidMechanics and the Properties of Blood Vessel Walls, Oxford University Press, Oxford–New York–Toronto, Chap. 7, pp. 86–105.
5.
Moreno
,
A. H.
,
Katz
,
A. I.
,
Gold
,
L. D.
, and
Reddy
,
R. V.
,
1970
, “
Mechanics of Dog Veins and Other Very Thin-Walled Tubular Structures
,”
Circ. Res.
,
27
, pp.
1069
1080
.
6.
Fung, Y. C., 1984, “The Veins,” in: Biodynamics: Circulation, Chap. 4, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo.
7.
Carton
,
T. W.
,
Dainauskas
,
J.
, and
Clark
,
J. W.
,
1962
, “
Elastic Properties of Single Elastin Fibers
,”
J. Appl. Physiol.
,
17
, p.
547
547
.
8.
Benedict
,
J. V.
,
Walker
,
L. B.
, and
Harris
,
E. H.
,
1968
, “
Stress–Strain Characteristics of Unembalmed Human Tendon
,”
J. Biomech.
,
1
, p.
53
53
.
9.
Attinger
,
E. O.
,
1969
, “
Wall Properties of Veins
,”
IEEE Trans. Biomed. Eng.
,
16
, No.
4
, pp.
253
261
.
10.
Gow, B. S., 1972, “The Influence of Vascular Smooth Muscle on the Viscoelastic Properties of Blood Vessels,” in: Bergel. Cardiovascular Fluid Dynamics, Academic Press., pp. 65–110.
11.
Kamm
,
R. D.
,
1982
, “
Bioengineering Studies of Periodic External Compression as Prophylaxis Against Deep Venous Thrombosis—Part I: Numerical Studies
,”
ASME J. Biomech. Eng.
,
104
, pp.
87
99
.
12.
Kececioglu
,
I.
,
McClurken
,
M. E.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1981
, “
Steady, Supercritical Flow in Collapsible Tubes. Part 1. Experimental Observations
,”
J. Fluid Mech.
,
109
, pp.
367
389
.
13.
Bonis
,
M.
,
Ribreau
,
C.
, and
Verchery
,
G.
,
1981
, “
Etude Expe´rimentale et The´orique de l’Aplatissement d’un Tube E´lastique en De´pression
,”
J. Me´can. App.
,
52
, pp.
123
144
.
14.
Bertram
,
C. D.
,
1987
, “
The Effects of Wall Thickness, Axial Strain and End Proximity on the Pressure–Area Relation of Collapsible Tubes
,”
J. Biomech.
,
20
, No.
9
, pp.
863
876
.
15.
Palermo
,
T.
, and
Flaud
,
P.
,
1987
, “
Etude de l’Effondrement a` Deux et Trois Lobes de Tubes E´lastiques
,”
J. Biophys. Biome´c.
,
11
, No.
3
, pp.
105
111
.
16.
Nahmias, J., 2000, “Pertes de Charge Dans les Tuyaux Collabables,” The`se de Troisie`me Cycle, Universite´ Paris VI.
17.
McClurken, M. E., 1978, “Shape Independent Area Measurements in Collapsible Tubes by an Electrical Impedance Technique,” Proc. 31st Ann. Conf. Eng. Medicine & Biology, Atlanta, GA, p. 95.
18.
Elad
,
D.
,
Sahar
,
M.
,
Avidor
,
J. M.
, and
Einav
,
S.
,
1992
, “
Steady Flow Through Collapsible Tubes: Measurements of Flow and Geometry
,”
ASME J. Biomech. Eng.
,
114
, No.
1
, p.
84
84
.
19.
Thiriet
,
M.
,
Delpuech
,
C.
,
Piroird
,
J.
, and
Magnin
,
I.
,
1987
, “
Banc de Mesure Optique de la De´formation de Conduites Souples
,”
Innov. Tech. Biol. Me´d.
,
8
, pp.
99
107
.
20.
Bertram
,
C. D.
, and
Ribreau
,
C.
,
1989
, “
Cross-Sectional Area Measurements in Collapsed Tubes Using the Transformer Principle
,”
Med. Biol. Eng. Comput.
,
27
, pp.
357
364
.
21.
Taylor
,
L. A.
, and
Gerrard
,
J. H.
,
1977
, “
Pressure Radius Relationships for Elastic Tubes and Their Application to Arteries. Part I and II
,”
Med. Biol. Eng. Comput.
,
15
, pp.
11
21
.
22.
Olsen
,
J. H.
, and
Shapiro
,
A. H.
,
1967
, “
Large Waves in Fluid Filled Elastic Tubes
,”
J. Fluid Mech.
,
20
, pp.
513
538
.
23.
Kresh
,
E.
,
1977
, “
Cross-Sectional Shape of Flexible Tubes
,”
Bull. Math. Biol.
,
39
, p.
679
679
.
24.
Kresh
,
E.
,
1979
, “
Compliance of Flexible Tubes
,”
J. Biomech.
,
12
, pp.
825
839
.
25.
Flaherty
,
J. E.
,
Keller
,
J. B.
, and
Rubinow
,
S.
,
1972
, “
Post Buckling Behavior of Elastic Tubes and Rings With Opposite Sides in Contact
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
23
, No.
4
, pp.
446
455
.
26.
Ribreau
,
C.
,
Naili
,
S.
,
Bonis
,
M.
, and
Langlet
,
A.
,
1993
, “
Collapse of Thin-Walled Elliptical Tubes for High Values of Major to Minor Axis Ratio
,”
ASME J. Biomech. Eng.
,
115
, No.
4(B)
, p.
432
432
.
27.
Shapiro
,
A. H.
,
1977
, “
Steady Flow in Collapsible Tubes
,”
ASME J. Biomech. Eng.
,
99
, p.
126
126
.
28.
Shapiro, A. H., 1977, “Physiologic and Medical Aspects of Flow in Collapsible Tubes,” Proc. Sixth Canadian Congress of Applied Mechanics, Vancouver, May 29–June 3, pp. 883–906.
29.
Gauer, O. H., and Thron, H. L., 1965, “Postural Changes in the Circulation,” in: Handbook of Physiology: Circulation, American Physiological Society, Washington, DC, Sect. 2, Vol. 3, pp. 2409–2439.
You do not currently have access to this content.