“Tissue engineering” uses implanted cells, scaffolds, DNA, protein, and/or protein fragments to replace or repair injured or diseased tissues and organs. Despite its early success, tissue engineers have faced challenges in repairing or replacing tissues that serve a predominantly biomechanical function. An evolving discipline called “functional tissue engineering” (FTE) seeks to address these challenges. In this paper, the authors present principles of functional tissue engineering that should be addressed when engineering repairs and replacements for load-bearing structures. First, in vivo stress/strain histories need to be measured for a variety of activities. These in vivo data provide mechanical thresholds that tissue repairs/replacements will likely encounter after surgery. Second, the mechanical properties of the native tissues must be established for subfailure and failure conditions. These “baseline data” provide parameters within the expected thresholds for different in vivo activities and beyond these levels if safety factors are to be incorporated. Third, a subset of these mechanical properties must be selected and prioritized. This subset is important, given that the mechanical properties of the designs are not expected to completely duplicate the properties of the native tissues. Fourth, standards must be set when evaluating the repairs/replacements after surgery so as to determine, “how good is good enough?” Some aspects of the repair outcome may be inferior, but other mechanical characteristics of the repairs and replacements might be suitable. New and improved methods must also be developed for assessing the function of engineered tissues. Fifth, the effects of physical factors on cellular activity must be determined in engineered tissues. Knowing these signals may shorten the iterations required to replace a tissue successfully and direct cellular activity and phenotype toward a desired end goal. Finally, to effect a better repair outcome, cell-matrix implants may benefit from being mechanically stimulated using in vitro “bioreactors” prior to implantation. Increasing evidence suggests that mechanical stress, as well as other physical factors, may significantly increase the biosynthetic activity of cells in bioartificial matrices. Incorporating each of these principles of functional tissue engineering should result in safer and more efficacious repairs and replacements for the surgeon and patient. [S0148-0731(00)00206-5]

1.
Biewener
,
A. A.
,
Blickhan
,
R.
,
Perry
,
A. K.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
,
1988
, “
Muscle Forces During Locomotion in Kangaroo Rats: Force Platform and Tendon Buckle Measurements Compared
,”
J. Exp. Biol.
,
137
, pp.
191
205
.
2.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
,
1982
, “
A Note on the Application and Evaluation of the Buckle Transducer for Knee Ligament Force Measurement
,”
ASME J. Biomech. Eng.
,
104
, pp.
125
128
.
3.
Komi
,
P. V.
,
1990
, “
Relevance of In Vivo Force Measurements to Human Biomechanics
,”
J. Biomech.
,
23
, pp.
23
34
.
4.
Komi
,
P. V.
,
Fukashiro
,
S.
, and
Jarvinen
,
M.
,
1992
, “
Biomechanical Loading of Achilles Tendon During Normal Locomotion
,”
Clin. Sports Med.
,
11
, pp.
521
531
.
5.
Cummings
,
J. F.
,
Holden
,
J. P.
,
Grood
,
E. S.
,
Wroble
,
R. R.
,
Butler
,
D. L.
, and
Schafer
,
J.
,
1992
, “
In-Vivo Measurement of Patellar Tendon Forces and Joint Position in the Goat Model
,”
Trans. 37th Orthopaedic Res. Soc.
,
15
, pp.
601
601
.
6.
Glos
,
D. L.
,
Butler
,
D. L.
,
Grood
,
E. S.
, and
Levy
,
M. S.
,
1993
, “
In Vitro Evaluation of an Implantable Force Transducer (IFT) in a Patellar Tendon Model
,”
ASME J. Biomech. Eng.
,
115
, pp.
335
343
.
7.
Herzog
,
W.
,
Leonard
,
T. R.
,
Renaud
,
J. M.
,
Wallace
,
J.
,
Chaki
,
G.
, and
Bornemisza
,
S.
,
1992
, “
Force-Length Properties and Functional Demands of Cat Gastrocnemius, Soleus, and Plantaris Muscles
,”
J. Biomech.
,
25
, pp.
1329
1335
.
8.
Holden
,
J. P.
,
Grood
,
E. S.
,
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Butler
,
D. L.
, and
Bylski-Austrow
,
D. I.
,
1994
, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
,
27
, pp.
517
526
.
9.
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Grood
,
E. S.
,
Holden
,
J. P.
,
Feder
,
S. M.
, and
Butler
,
D. L.
,
1996
, “
The Use of an Implantable Force Transducer to Measure Patellar Tendon Forces in Goats
,”
J. Biomech.
,
29
, pp.
557
561
.
10.
Ronsky
,
J. L.
,
Herzog
,
W.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
,
Grood
,
E. S.
, and
Butler
,
D. L.
,
1995
, “
In Vivo Quantification of the Cat Patellofemoral Joint Contact Stresses and Areas
,”
J. Biomech.
,
28
, pp.
977
983
.
11.
Xu
,
W. S.
,
Butler
,
D. L.
,
Stouffer
,
D. C.
,
Grood
,
E. S.
, and
Glos
,
D. L.
,
1992
, “
Theoretical Analysis of an Implantable Force Transducer for Tendon and Ligament Structures
,”
ASME J. Biomech. Eng.
,
114
, pp.
170
177
.
12.
Korvick, D. L., Holden, J. P., Grood, E. S., Cummings, J. F., and Rupert, M. P., 1992, “Relationships Between Patellar Tendon, Anterior Cruciate Ligament and Vertical Ground Reaction Force During Gait: Preliminary Studies in a Quadruped,” Advances in Bioengineering, ASME BED-Vol. 22, pp. 99–102.
13.
Malaviya
,
P.
,
Butler
,
D. L.
,
Korvick
,
D. L.
, and
Proch
,
F. S.
,
1998
, “
In Vivo Tendon Forces: Do They Correlate with Activity Level and Remain Bounded? Evidence in a Rabbit Flexor Tendon Model
,”
J. Biomech.
,
31
, pp.
1043
1049
.
14.
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Woo
,
S. L.
,
Runco
,
T. J.
,
Sakane
,
M.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
15
, pp.
278
284
.
15.
Sakane
,
M.
,
Fox
,
R. J.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
In Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
,
15
, pp.
285
293
.
16.
Beynnon
,
B. D.
,
Ryder
,
S. H.
,
Konradsen
,
L.
,
Johnson
,
R. J.
,
Johnson
,
K.
, and
Renstrom
,
P. A.
,
1999
, “
The Effect of Anterior Cruciate Ligament Trauma and Bracing on Knee Proprioception
,”
Am. J. Sports Med.
,
27
, pp.
150
155
.
17.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Renstrom
,
P. A.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Peura
,
G. D.
, and
Uh
,
B. S.
,
1999
, “
The Strain Behavior of the Anterior Cruciate Ligament During Stair Climbing: An In Vivo Study
,”
Arthroscopy
,
15
, pp.
185
191
.
18.
Hodge
,
W. A.
,
Carlson
,
K. L.
,
Fijan
,
R. S.
,
Burgess
,
R. G.
,
Riley
,
P. O.
,
Harris
,
W. H.
, and
Mann
,
R. W.
,
1989
, “
Contact Pressures From an Instrumented Hip Endoprosthesis
,”
J. Bone Jt. Surg.
,
71A
, pp.
1378
1386
.
19.
Nelson
,
B. H.
,
Anderson
,
D. D.
,
Brand
,
R. A.
, and
Brown
,
T. D.
,
1988
, “
Effect of Osteochondral Defects on Articular Cartilage. Contact Pressures Studied in Dog Knees
,”
Acta Orthop. Scand.
,
59
, pp.
574
579
.
20.
Armstrong
,
C. G.
,
Bahrani
,
A. S.
, and
Gardner
,
D. L.
,
1979
, “
In Vitro Measurement of Articular Cartilage Deformations in the Intact Human Hip Joint Under Load
,”
J. Bone Jt. Surg., Am. Vol.
,
61
, pp.
744
755
.
21.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
, pp.
1037
1047
.
22.
Martin, R. B., and Burr, D. B., 1989, Structure, Function and Adaptation of Compact Bone, Raven Press, NY, pp. 143–185.
23.
Goldstein, S. A., Hollister, S. J., Kuhn, J. L., and Kikuchi, N., 1990, “The Mechanical and Remodeling Properties of Trabecular Bone,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L.-Y. Woo, eds., Springer Verlag, NY, pp. 61–81.
24.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
, pp.
405
410
.
25.
An, K. N., Chao, E. Y. S., and Kaufman, K. R., 1991, “Analysis of Muscle and Joint Loads,” Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds., Raven Press, New York, pp. 1–50.
26.
Huiskes
,
R.
, and
Hollister
,
S. J.
,
1990
, “
From Structure to Process, From Organ to Cell: Recent Developments of FE-Analysis in Orthopaedic Biomechanics
,”
ASME J. Biomech. Eng.
,
115
, pp.
520
527
.
27.
Rasmussen
,
T. J.
,
Feder
,
S. M.
,
Butler
,
D. L.
, and
Noyes
,
F. R.
,
1994
, “
The Effects of 4Mrad Gamma Irradiation Sterilization on the Initial Structural Properties of ACL and PCL Patellar Tendon Allografts
,”
J. Arthroscopic Related Surgery
,
10
, pp.
188
197
.
28.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
,
1992
, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures
,”
Biomaterials
,
13
, pp.
67
97
.
29.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
30.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
31.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
,
23
, pp.
145
155
.
32.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
,
1981
, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
103
, pp.
61
66
.
33.
Ateshian, G. A., and Soltz, M. A., 1999, “A Biphasic Conewise Linear Elasticity Model for Modeling Tension-Compression Nonlinearity in Articular Cartilage,” in: Cartilaginous Tissue Mechanics, ASME BED-Vol. 42, pp. 69–70.
34.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
, pp.
379
392
.
35.
Setton
,
L. A.
,
Tohyama
,
H.
, and
Mow
,
V. C.
,
1998
, “
Swelling and Curling Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
355
361
.
36.
Mow, V. C., and Ateshian, G. A., 1997, “Lubrication and Wear of Diarthrodial Joints,” in: Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds., Philadelphia, Lippincott-Raven, pp. 275–315.
37.
Lam
,
T. C.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1993
, “
Changes in the Cyclic and Static Relaxations of the Rabbit Medial Collateral Ligament Complex During Maturation
,”
J. Biomech.
,
26
, pp.
9
17
.
38.
Chimich
,
D.
,
Shrive
,
N.
,
Frank
,
C. B.
,
Marchuk
,
L.
, and
Bray
,
R.
,
1992
, “
Water Content Alters Viscoelastic Behavior of the Normal Adolescent Rabbit Medial Collateral Ligament
,”
J. Biomech.
,
25
, pp.
831
837
.
39.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
, pp.
447
452
.
40.
Butler, D. L., Noyes, F. R., and Grood, E. S., 1978, “Measurement of the Biomechanical Properties of Ligaments,” in: CRC Handbook on Engineering and Biology, G. Bahriuk and A. Burstein, eds., Section B, Vol. 1, pp. 279–314.
41.
Butler
,
D. L.
,
Grood
,
E. S.
,
Noyes
,
F. R.
,
Zernicke
,
R. F.
, and
Brackett
,
K.
,
1984
, “
Effects of Structure and Strain Measurement Technique on the Material Properties of Young Human Tendons and Fascia
,”
J. Biomech.
,
17
, pp.
579
596
.
42.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle–Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
, pp.
425
432
.
43.
Cowin, S. C., 1989, Bone Mechanics, CRC Press, Boca Raton, FL, pp. 97–158.
44.
Hoffler, C. E., McCreadie, B. R., Smith, E. A., and Goldstein, S. A., 2000, “A Hierarchical Approach to Exploring Bone Mechanical Properties,” in: Mechanical Testing of Bone and the Bone-Implant Interface, Y. H. An, and R. A. Draughn, eds., CRC Press, Boca Raton, FL, pp. 133–150.
45.
Kwan
,
M. K.
,
Coutts
,
R. D.
,
Woo
,
S. L.
, and
Field
,
F. P.
,
1989
, “
Morphological and Biomechanical Evaluations of Neocartilage From the Repair of Full-Thickness Articular Cartilage Defects Using Rib Perichondrium Autografts: A Long-Term Study
,”
J. Biomech.
,
22
, pp.
921
930
.
46.
Mow
,
V. C.
,
Ratcliffe
,
A.
,
Rosenwasser
,
M. P.
, and
Buckwalter
,
J. A.
,
1991
, “
Experimental Studies on Repair of Large Osteochondral Defects at a High Weight Bearing Area of the Knee Joint: A Tissue Engineering Study
,”
ASME J. Biomech. Eng.
,
113
, pp.
198
207
.
47.
Vunjak-Novakovic
,
G.
,
Martin
,
I.
,
Obradovic
,
B.
,
Treppo
,
S.
,
Grodzinsky
,
A. J.
,
Langer
,
R.
, and
Freed
,
L. E.
,
1999
, “
Bioreactor Cultivation Conditions Modulate the Composition and Mechanical Properties of Tissue-Engineered Cartilage
,”
J. Orthop. Res.
,
17
, pp.
130
138
.
48.
Freed
,
L. E.
,
Langer
,
R.
,
Martin
,
I.
,
Pellis
,
N. R.
, and
Vunjak-Novakovic
,
G.
,
1997
, “
Tissue Engineering of Cartilage in Space
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
13885
13890
.
49.
Hunziker
,
E. B.
, and
Rosenberg
,
L. C.
,
1996
, “
Repair of Partial-Thickness Defects in Articular Cartilage: Cell Recruitment From the Synovial Membrane
,”
J. Bone Jt. Surg.
,
78
, pp.
721
733
.
50.
Ahsan
,
T.
, and
Sah
,
R. L.
,
1999
, “
Biomechanics of Integrative Cartilage Repair
,”
Osteoarthritis Cartilage
,
7
, pp.
29
40
.
51.
Ateshian
,
G. A.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
,
1992
, “
Curvature Characteristics and Congruence of the Thumb Carpometacarpal Joint: Differences Between Female and Male Joints
,”
J. Biomech.
,
25
, pp.
591
607
.
52.
Hunziker
,
E. B.
,
1999
, “
Biologic Repair of Articular Cartilage. Defect Models in Experimental Animals and Matrix Requirements
,”
Clin. Orthop.
,
367
, pp.
135
146
.
53.
Wakitani
,
S.
,
Goto
,
T.
,
Pineda
,
S. J.
,
Young
,
R. G.
,
Mansour
,
J. M.
,
Caplan
,
A. I.
, and
Goldberg
,
V. M.
,
1994
, “
Mesenchymal Cell-Based Repair of Large, Full-Thickness Defects of Articular Cartilage
,”
J. Bone Jt. Surg.
,
76
, pp.
579
592
.
54.
Awad
,
H. A.
,
Butler
,
D. L.
,
Boivin
,
G. P.
,
Smith
,
F.
,
Malaviya
,
P.
,
Huibregtse
,
B.
,
Caplan
,
A. I.
,
1999
, “
Autologous Mesenchymal Stem Cell-Mediated Repair of Tendon
,”
Tissue Eng.
,
5
, pp.
267
277
.
55.
Awad, H. A. et al., 2000, “In Vitro Characterization of Mesenchymal Stem Cell-Seeded Collagen Scaffolds for Tendon Repair: Effects of Initial Seeding Density on Contraction Kinetics,” J. Biomed. Mater. Res., in press.
56.
Butler
,
D. L.
, and
Awad
,
H. A.
,
1999
, “
Perspectives on Cell and Collagen Composites for Tendon Repair
,”
CORR
,
367S
, pp.
S324–S332
S324–S332
.
57.
Young
,
R.
,
Butler
,
D.
,
Weber
,
W.
,
Caplan
,
A.
,
Gordon
,
S.
, and
Fink
,
D.
,
1998
, “
Use of Mesenchymal Stem Cells in a Collagen Matrix for Achilles Tendon Repair
,”
J. Orthop. Res.
,
16
, pp.
406
413
.
58.
Lohmander
,
L. S.
, and
Felson
,
D. T.
,
1997
, “
Defining the Role of Molecular Markers to Monitor Disease, Intervention, and Cartilage Breakdown in Osteoarthritis
,”
J. Rheumatol.
,
24
, pp.
782
785
.
59.
Lyyra
,
T.
,
Jurvelin
,
J.
,
Pitkanen
,
P.
,
Vaatainen
,
U.
, and
Kiviranta
,
I.
,
1995
, “
Indentation Instrument for the Measurement of Cartilage Stiffness Under Arthroscopic Control
,”
Med. Eng. Phys.
,
17
, pp.
395
399
.
60.
Karvonen
,
R. L.
,
Negendank
,
W. G.
,
Fraser
,
S. M.
,
Mayes
,
M. D.
,
An
,
T.
, and
Fernandez Madrid
,
F.
,
1990
, “
Articular Cartilage Defects of the Knee: Correlation Between Magnetic Resonance Imaging and Gross Pathology
,”
Ann. Rheum. Dis.
,
49
, pp.
672
675
.
61.
Miller, P. D., and Bonnick, S. L., 1999, “Clinical Application of Bone Densitometry,” in: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 4th ed., M. J. Favus, ed., Lippincott Williams & Wilkins, Philadelphia, pp. 152–159.
62.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1995
, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
,
13
, pp.
410
421
.
63.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” in: Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds., Philadelphia, Lippincott Raven, pp. 179–207.
64.
Goldstein
,
S. A.
,
Patil
,
P. V.
, and
Moalli
,
M. R.
,
1999
, “
Perspectives on Tissue Engineering in Bone
,”
CORR
,
367S
, pp.
S419–S423
S419–S423
.
65.
Guilak, F., and Mow, V. C., 1992, “Determination of the Mechanical Response of the Chondrocyte In Situ Using Finite Element Modeling and Confocal Microscopy,” Advances in Bioengineering, ASME BED-Vol. 20, pp. 21–23.
66.
Caplan, A. I., and Bruder, S. P., 1997, “Cell and Molecular Engineering of Bone Regeneration,” in: Principles of Tissue Engineering, R. Lanza, R. Langer, and W. Chick, eds., R. G. Landes Company, Chap. 37, pp. 603–618.
67.
Ishaug-Riley
,
S. L.
,
Crane-Kruger
,
G. M.
,
Yaszemski
,
M. J.
, and
Mikos
,
A. G.
,
1998
, “
Three-Dimensional Culture of Rat Calvarial Osteoblasts in Porous Biodegradable Polymers
,”
Biomaterials
,
19
, pp.
1405
1412
.
68.
Vandenburgh
,
H. H.
,
1982
, “
Dynamic Mechanical Orientation of Skeletal Myofibers In Vitro
,”
Dev. Biol.
,
93
, pp.
438
443
.
69.
Buckley
,
M. J.
,
Banes
,
A. J.
,
Levin
,
L. G.
,
Sumpio
,
B. E.
,
Sato
,
M.
,
Jordan
,
R.
,
Gilbert
,
J.
,
Link
,
G. W.
, and
Tran Son Tay
,
R.
,
1988
, “
Osteoblasts Increase Their Rate of Division and Align in Response to Cyclic, Mechanical Tension in Vitro
,”
Bone Miner.
,
4
, pp.
225
236
.
70.
Sumpio
,
B. E.
,
Banes
,
A. J.
,
Link
,
W. G.
, and
Johnson
, Jr.,
G.
,
1988
, “
Enhanced Collagen Production by Smooth Muscle Cells During Repetitive Mechanical Stretching
,”
Arch. Surg.
,
123
, pp.
1233
1236
.
71.
Wu
,
F.
,
Dunkelman
,
N.
,
Peterson
,
A.
,
Davisson
,
T.
,
De La Torre
,
R.
, and
Jain
,
D.
,
1999
, “
Bioreactor Development for Tissue-Engineered Cartilage
,”
Ann. N.Y. Acad. Sci.
,
875
, pp.
405
411
.
72.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
,
108
, pp.
1497
1508
.
73.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. B.
,
Wong
,
D. D.
,
Chao
,
P. G.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2000
, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
ASME J. Biomech. Eng.
,
122
, pp.
252
260
.
74.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbott
,
W. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
,
1999
, “
Functional Arteries Grown in Vitro
,”
Science
,
284
, pp.
489
493
.
You do not currently have access to this content.