The main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano-electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245–258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169–180) (1) the steady one-dimensional permeation problem; and (2) the transient one-dimensional ramped-displacement, confined-compression, stress-relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow-induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i.e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i.e., increasing its FCD in a nonuniform manner) either by direct compression or by drag-induced compaction; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chodrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the results from this study offer new challenges for the understanding of possible mechanisms that control chondrocyte biosyntheses. [S0148-0731(00)00604-X]

1.
Bachrach
,
N. M.
,
Valhmu
,
W. B.
,
Stazzone
,
E. J.
,
Ratcliffe
,
A.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1995
, “
Changes in Proteoglycan Synthesis of Chondrocytes in Articular Cartilage Are Associated With the Time-Dependent Changes in Their Mechanical Environment
,”
J. Biomech.
,
28
, pp.
1561
1569
.
2.
Brighton
,
C. T.
,
Jenson
,
L.
,
Pollack
,
S. R.
,
Tolin
,
B. S.
, and
Clark
,
C. C.
,
1989
, “
Proliferative and Synthetic Response of Bovine Growth Plate Chondrocytes to Various Capacitatively Coupled Electric Fields
,”
J. Orthop. Res.
,
7
, pp.
759
765
.
3.
Freeman
,
P. M.
,
Natarajan
,
R. N.
,
Kimura
,
J. H.
, and
Andriachi
,
T. P.
,
1994
, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
,
12
, pp.
311
320
.
4.
Gray
,
M. L.
,
Pizzanelli
,
A. M.
,
Grodzinsky
,
A. J.
, and
Lee
,
R. C.
,
1988
, “
Mechanical and Physicochemical Determinants of the Chondrocyte Biosynthetic Response
,”
J. Orthop. Res.
,
6
, pp.
777
792
.
5.
Guilak
,
F. A.
,
Meyers
,
B. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
The Effect of Matrix Compression on Proteoglycan Metabolism in Articular Cartilage Explants
,”
Osteoarthritis Cartilage
,
2
, pp.
91
101
.
6.
Guilak, F. A., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” in: Basic Orthopaedic Biomechanics, Mow V. C., and Hayes, W. C., eds., Lippincott-Raven Pubs., Philadelphia, pp. 179–207.
7.
Hall
,
A. C.
,
Urban
,
J. P. G.
, and
Gehl
,
K. A.
,
1991
, “
The Effects of Hydrostatic Pressure on Matrix Synthesis in Articular Cartilage
,”
J. Orthop. Res.
,
9
, pp.
1
10
.
8.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
,
1995
, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
,
28
, pp.
1055
1066
.
9.
Lafeber
,
F.
,
Veldhuijzen
,
J. P.
,
Vanroy
,
A. M.
,
Huber-Bruning
,
O.
, and
Bijlsma
,
J. W. J.
,
1992
, “
Intermittent Hydrostatic Compressive Force Stimulates Exclusively the Proteoglycan Synthesis of Osteoarthritic Human Cartilage
,”
Br. J. Rheumatol.
,
31
, pp.
437
442
.
10.
MacGinitie
,
L. A.
,
Gluzband
,
Y. A.
, and
Grodzinsky
,
A. J.
,
1994
, “
Electric Field Stimulation Can Increase Protein Synthesis in Articular Cartilage Explants
,”
J. Orthop. Res.
,
12
, pp.
151
160
.
11.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
L.-Y. H.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H. K.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
,
7
, pp.
619
636
.
12.
Sah, R. L., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D., 1992, “Effects of Static and Dynamic Compression on Matrix Metabolism in Cartilage Explants,” in: Articular Cartilage and Osteoarthritis, Kuettner, K. E., Schleyerback, R., Peyron, J. G., and Hascall, V. C., eds., Raven Press, New York, pp. 373–392.
13.
Schneiderman
,
R. D.
,
Kevet
,
A.
, and
Maroudas
,
A.
,
1986
, “
Effects of Mechanical and Osmotic Pressure on the Rate of Glycosaminoglycan Synthesis in the Human Adult Femoral Head Cartilage: An in Vitro Study
,”
J. Orthop. Res.
,
4
, pp.
393
408
.
14.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
,
1993
, “
Mechano-transduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
,
260
, pp.
1124
1127
.
15.
Valhmu
,
W. B.
,
Stazzone
,
E. J.
,
Bachrach
,
N. M.
,
Saed-Nejad
,
F.
,
Fischer
,
S. G.
,
Mow
,
V. C.
, and
Ratcliffe
,
A.
,
1998
, “
Constant Compressive Loading of Articular Cartilage Induces a Transient Stimulation of Aggrecan Gene Expression
,”
Arch. Biochem. Biophys.
,
353
, pp.
29
36
.
16.
Comper, W. D., 1996, Extracellular Matrix, 2, Harwood Academic Publishers, Australia.
17.
Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” in: Basic Orthopaedic Biomechanics, Mow, V. C., and Hayes, W. C., eds., Lippincott-Raven Pubs., Philadelphia, pp. 113–177.
18.
Muir
,
H.
,
1983
, “
Proteoglycans as Organizers of the Extracellular Matrix
,”
Biochem. Soc. Trans.
,
11
, pp.
613
622
.
19.
Bassett
,
C. A. L.
, and
Pawluk
,
R. J.
,
1972
, “
Electrical Behavior of Cartilage During Loading
,”
Science
,
178
, pp.
982
983
.
20.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
,
1995
, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
,
117
, pp.
180
192
.
21.
Chen
,
A. C.
,
Nguyen
,
T. T.
, and
Sah
,
R. L.
,
1997
, “
Streaming Potentials During the Confined Compression Creep Test of Normal and Proteoglycan-Depleted Cartilage
,”
Ann. Biomed. Eng.
,
25
, pp.
269
277
.
22.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics. I. Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
, pp.
615
627
.
23.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics. II. A Continuum model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
24.
Frank
,
E. H.
,
Grodzinsky
,
A. J.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1987
, “
Streaming Potentials: A Sensitive Index of Enzymatic Degradation in Articular Cartilage
,”
J. Orthop. Res.
,
5
, pp.
497
508
.
25.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1985
, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanochemical Forces
,”
J. Orthop. Res.
,
3
, pp.
148
159
.
26.
Grodzinsky
,
A. J.
,
Lipshitz
,
H.
, and
Glimcher
,
M. J.
,
1978
, “
Electromechanical Properties of Articular Cartilage During Compression and Stress Relaxation
,”
Nature (London)
,
275
, pp.
448
450
.
27.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
, pp.
709
723
.
28.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
,
1981
, “
Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties
,”
ASME J. Biomech. Eng.
,
103
, pp.
280
292
.
29.
Lotke
,
P. A.
,
Black
,
J.
, and
Richardson
,
S. J.
,
1974
, “
Electromechanical Properties in Human Articular Cartilage
,”
J. Bone Jt. Surg.
,
56A
, pp.
1040
1046
.
30.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
, pp.
575
595
.
31.
Maroudas
,
A.
,
1975
, “
Swelling Pressure Versus Collagen Tension in Normal and Degenerate Articular Cartilage
,”
Nature (London)
,
260
, p.
808
808
.
32.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” in: Adult Articular Cartilage, 2nd ed., Freeman, M. A. R., ed., Pitman Medical Pub., Kent, U.K., pp. 215–290.
33.
Maroudas
,
A.
,
Muir
,
H.
, and
Wingham
,
J.
,
1969
, “
The Correlation of Fixed Negative Charge With Glycosaminoglycan Content of Human Articular Cartilage
,”
Biochim. Biophys. Acta
,
177
, pp.
492
500
.
34.
Hascall, V. C., and Hascall, G. K., 1983, “Proteglycans,” in: Cell Biology of Extracellular Matrix, Hay, E. D., ed., Plenum Press, pp. 39–63.
35.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for Swelling and Deformation Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
36.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
, pp.
169
180
.
37.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
38.
Donnan
,
F. G.
,
1924
, “
The Theory of Membrane Equilibria
,”
Chem. Rev.
,
1
, pp.
73
90
.
39.
Helfferich, F., 1962, Ion Exchange, McGraw-Hill, New York.
40.
Lai, W. M., Ateshian, G. A., Sun, D. N., and Mow, V. C., 1999, “The Electrical Environment of Chondrocytes in Normal and OA Cartilage: Streaming Potential vs. Nernst Potential,” Proc. ASME Bioengng. Conf., Y. C. Fung 80th Anniversary Biomechanics Symposium, ASME BED-Vol. 42, pp. 135–136.
41.
Katchalsky, A., and Curran, P. F., 1975, Non Equilibrium Thermodynamics in Biophysics, Harvard University Press, Boston, MA.
42.
Mow
,
V. C.
,
Wang
,
C. B.
, and
Hung
,
C. T.
,
1999
, “
The Extracellular Matrix, Interstitial Fluid and Ions as a Mechanical Signal Transducer in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
, pp.
41
58
.
43.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
, pp.
793
802
.
44.
Hasse, R., 1969, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading, MA (also, Dover reprinted ed., 1990).
45.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
46.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During Permeation Experiment
,”
Biorheology
,
17
, pp.
111
123
.
47.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
48.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1985
, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent, Compressive Stress Relaxation Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
107
, pp.
206
218
.
49.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
,
1981
, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
103
, pp.
61
66
.
50.
Mow
,
V. C.
,
Ateshian
,
G. A.
,
Lai
,
W. M.
, and
Gu
,
W. Y.
,
1998
, “
Effects of Fixed Charges on the Stress-Relaxation Behavior of Hydrated Soft Tissues in a Confined Compression Problem
,”
Int. J. Solids Struct.
,
35
, pp.
4945
4962
.
51.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1375
1402
.
52.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Gu
,
W. Y.
, and
Mow
,
V. C.
,
1998
, “
Ionic Polarization in Charged Hydrated Soft Tissues
,”
Advances in Bioengineering
, ASME BED-Vol.
39
, pp.
253
254
.
53.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Cartilage With Age, Degeneration and Water Content
,”
J. Bone Jt. Surg.
,
64A
, pp.
88
94
.
54.
Overbeek
,
J. T. G.
,
1961
, “
The Donnan Equilibrium
,”
Prog. Biophys. Mol. Biol.
,
6
, pp.
57
126
.
55.
Setton
,
L. A.
,
Elliot
,
D. M.
, and
Mow
,
V. C.
,
1999
, “
Altered Mechanics of Cartilage with Osteoarthritis: Human OA and Animal Model of Joint Degeneration
,”
Osteoarthritis Cartilage
,
7
, pp.
2
14
.
You do not currently have access to this content.