We have formulated the first constitutive model to describe the complete measured planar biaxial stress–strain relationship of the native and glutaraldehyde-treated aortic valve cusp using a structurally guided approach. When applied to native, zero-pressure fixed, and low-pressure fixed cusps, only three parameters were needed to simulate fully the highly anisotropic, and nonlinear in-plane biaxial mechanical behavior. Differences in the behavior of the native and zero- and low-pressure fixed cusps were found to be primarily due to changes in the effective fiber stress–strain behavior. Further, the model was able to account for the effects of small <10deg misalignments in the cuspal specimens with respect to the biaxial test axes that increased the accuracy of the model material parameters. Although based upon a simplified cuspal structure, the model underscored the role of the angular orientation of the fibers that completely accounted for extreme mechanical anisotropy and pronounced axial coupling. Knowledge of the mechanics of the aortic cusp derived from this model may aid in the understanding of fatigue damage in bioprosthetic heart valves and, potentially, lay the groundwork for the design of tissue-engineered scaffolds for replacement heart valves. [S0148-0731(00)00504-5]

1.
Krucinski
,
S.
,
Vesely
,
I.
,
Dokainish
,
M. A.
, and
Campbell
,
G.
,
1993
, “
Numerical Simulation of Leaflet Flexure in Bioprosthetic Valves Mounted on Rigid and Expansile Stents
,”
J. Biomech.
,
26
, pp.
929
943
.
2.
Christie, C. W., and Medland, I. C., 1982, “A Non-linear Finite Element Stress Analysis of Bioprosthetic Heart Valve,” Finite Element in Biomechanics, Gallagher, R. H., Simon, B. R., Johnson, P. C., and Gross, J. F., eds., Chichester, Wiley, pp. 153–179.
3.
Lee
,
J. M.
,
Courtman
,
D. W.
, and
Boughner
,
D. R.
,
1984
, “
The Glutaraldehyde-Stabilized Porcine Aortic Valve Xenograft. I. Tensile Viscoelastic Properties of the Fresh Leaflet Material
,”
J. Biomed. Mater. Res.
,
18
, pp.
61
77
.
4.
Lee
,
J. M.
,
Boughner
,
D. R.
, and
Courtman
,
D. W.
,
1984
, “
The Glutaraldehyde-Stabilized Porcine Aortic Valve Xenograft. II. Effect of Fixation With or Without Pressure on the Tensile Viscoelastic Properties of the Leaflet Material
,”
J. Biomed. Mater. Res.
,
18
, pp.
79
98
.
5.
Vesely
,
I.
, and
Noseworthy
,
R.
,
1992
, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Biomech.
,
25
, pp.
101
113
.
6.
Broom, N., and Christie, G. W., 1982, “The Structure/Function Relationship of Fresh and Gluteraldehyde-Fixed Aortic Valve Leaflets,” Cardiac Bioprosthesis, Cohn, L. H., and Gallucci, V., eds., Yorke Medical Books, New York, pp. 477–491.
7.
Christie
,
G. W.
,
1992
, “
Anatomy of Aortic Heart Valve Leaflets: The Influence of Glutaraldehyde Fixation on Function
,”
Eur. J. Cardio-Thoracic Surg.
,
6
, pp.
S25–S33
S25–S33
.
8.
Hilbert
,
S.
,
Barrick
,
M.
, and
Ferrans
,
V.
,
1990
, “
Porcine Aortic Valve Bioprosthesis: A Morphologic Comparison of the Effects of Fixation Pressure
,”
J. Biomed. Mater. Res.
,
24
, pp.
773
787
.
9.
Mayne
,
A. S. D.
,
Christie
,
G. W.
,
Smaill
,
B. H.
,
Hunter
,
P. J.
, and
Barratt-Boyes
,
B. G.
,
1989
, “
An Assessment of the Mechanical Properties of Leaflets From Four Second-Generation Porcine Bioprosthesis With Biaxial Testing Techniques
,”
J. Thorac. Cardiovasc. Surg.
,
98
, pp.
170
180
.
10.
Christie
,
G. W.
, and
Barratt-Boyes
,
B. G.
,
1995
, “
Age-Dependent Changes in the Radial Stretch of Human Aortic Valve Leaflets Determined by Biaxial Stretching
,”
Ann. Thoracic Surg.
,
60
, pp.
S156–S159
S156–S159
.
11.
Brossollet
,
L. J.
, and
Vito
,
R. P.
,
1996
, “
A New Approach to Mechanical Testing and Modeling of Biological Tissues, With Application to Blood Vessels
,”
ASME J. Biomech. Eng.
,
118
, pp.
433
439
.
12.
Billiar
,
K.
, and
Sacks
,
M.
,
2000
, “
Biaxial Mechanical Properties of Fresh and Glutaraldehyde Treated Porcine Aortic Valve Cusps: Part I—Experimental Findings
,”
ASME J. Biomech. Eng.
,
122
, pp.
23
30
.
13.
Rousseau
,
E. P. M.
,
Sauren
,
A. A. H. J.
,
Van Hout
,
M. C.
, and
Van Steenhoven
,
A. A.
,
1983
, “
Elastic and Viscoelastic Material Behaviour of Fresh and Glutaraldehyde-Treated Porcine Aortic Valve Tissues
,”
J. Biomech.
,
16
, pp.
339
348
.
14.
Sauren
,
A.
,
van Hout
,
M.
,
van Steenhoven
,
A.
,
Veldpaus
,
F.
, and
Janssen
,
J.
,
1983
, “
The Mechanical Properties of Porcine Aortic Valve Tissues
,”
J. Biomech.
,
16
, pp.
327
337
.
15.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1998
, “
The Aortic Valve Microstructure: Effects of Trans-Valvular Pressure
,”
J. Biomed. Mater. Res.
,
41
, pp.
131
141
.
16.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
17.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
, pp.
333
339
.
18.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1992
, “
A Constitutive Theory for Biomembranes: Application to Epicardial Mechanics
,”
ASME J. Biomech. Eng.
,
114
, pp.
461
466
.
19.
May-Newman
,
K.
, and
Yin
,
F. C. P.
,
1998
, “
A Constitutive Law for Mitral Valve Tissue
,”
ASME J. Biomech. Eng.
,
120
, pp.
38
47
.
20.
Sacks, M. S., 2000, “A Structural Constitutive Model for Chemically Treated Planar Connective Tissues Under Biaxial Loading,” Comput. Mech., in press.
21.
Sacks, M., 1999, “A Structural Model for Chemically Treated Soft Tissues,” 1999 Advances in Bioengineering, ASME BED-Vol. 43, pp. 101–102.
22.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
, pp.
1
12
.
23.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress–Strain Relationships in Flat Collageneous Tissues
,”
J. Biomech.
,
12
, pp.
423
436
.
24.
Harkness
,
M.
, and
Harkness
,
R.
,
1959
, “
Effect of Enzymes on Mechanical Properties of Tissues
,”
Nature (London)
,
183
, pp.
1821
1822
.
25.
Humphrey
,
J. D.
, and
Yin
,
F. C. P.
,
1987
, “
A New Constitutive Formulation for Characterizing the Mechanical Behavior of Soft Tissues
,”
Biophys. J.
,
52
, pp.
563
570
.
26.
Vesely
,
I.
,
Boughner
,
D. R.
, and
Leeson-Dietrich
,
J.
,
1995
, “
Bioprosthetic Valve Tissue Viscoelasticity: Implications on Accelerated Pulse Duplicator Testing
,”
Ann. Thoracic Surg.
,
60
, pp.
S379–S383
S379–S383
.
27.
Nielsen
,
P. M. F.
,
Hunter
,
P. J.
, and
Smaill
,
B. H.
,
1991
, “
Biaxial Testing of Membrane Biomaterials: Testing Equipment and Procedures
,”
ASME J. Biomech. Eng.
,
113
, pp.
295
300
.
28.
Thubrikar, M., 1990, The Aortic Valve, CRC, Boca Raton.
29.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
,
753
756
.
30.
Sacks
,
M. S.
,
1999
, “
A Method for Planar Biaxial Testing That Includes In-Plane Shear
,”
ASME J. Biomech. Eng.
,
121
, pp.
551
555
.
31.
Lanir
,
Y.
,
Lichtenstein
,
O.
, and
Imanuel
,
O.
,
1996
, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
ASME J. Biomech. Eng.
,
118
, pp.
41
47
.
32.
Zioupos
,
P.
, and
Barbenel
,
J. C.
,
1994
, “
Mechanics of Native Bovine Pericardium: II. A Structure Based Model for the Anisotropic Mechanical Behavior of the Tissue
,”
Biomaterials
,
15
, pp.
374
382
.
33.
Spencer, A. J. M., 1980, Continuum Mechanics, Longman Scientific & Technical, New York.
34.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, Numerical Recipes in C, Cambridge University Press, Cambridge.
35.
Choi
,
H. S.
, and
Vito
,
R. P.
,
1990
, “
Two Dimensional Stress–Strain Relationship for Canine Pericardium
,”
ASME J. Biomech. Eng.
,
112
, pp.
153
159
.
36.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: II—Parameter Estimation
,”
ASME J. Biomech. Eng.
,
112
, pp.
340
346
.
37.
Billiar, K., 1998, “A Structurally Guided Constitutive Model for Aortic Valve Bioprostheses: Effects of Glutaraldehyde Treatment and Mechanical Fatigue,” Ph.D. Dissertation in Bioengineering, University of Pennsylvania, Philadelphia.
38.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries of the Choice of Its Mathematical Expression
,”
Am. J. Physiol.
,
237
, pp.
H620–H631
H620–H631
.
39.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
,
1986
, “
An Approach to Quantification of Biaxial Tissue Stress–Strain Data
,”
J. Biomech.
,
19
, pp.
27
37
.
40.
Fung, Y. C., 1990, Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York.
41.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1993
, “
A Constitutive Relation for Passive Right-Ventricular Free Wall Myocardium
,”
J. Biomech.
,
26
, pp.
1341
1345
.
42.
Sacks, M. S., Smith, D. B., Thornton, M., and Iyengar, A. K. S., 1999, “Real Time Deformation of the Bioprosthetic Heart Valve,” Proc. First Joint BMES/EMBS Conference, Atlanta, GA, IEEE, p. 173.
43.
Sacks, M. S., 1999, “A Structural Constitutive Model for Pericardium That Utilizes SALS-Derived Fiber Orientation Information,” ASME J. Biomech. Eng., submitted.
44.
Hurschler
,
C.
,
Loitz-Ramage
,
B.
, and
Vanderby
,
R.
,
1997
, “
A Structurally Based Stress–Stretch Relationship For Tendon and Ligament
,”
ASME J. Biomech. Eng.
,
119
, pp.
392
399
.
45.
Comninou
,
M.
, and
Yannas
,
I. V.
,
1976
, “
Dependence of Stress–Strain Nonlinearity of Connective Tissues on the Geometry of Collagen Fibers
,”
J. Biomech.
,
9
, pp.
427
433
.
46.
Decraemer
,
W. F.
,
Maes
,
M. A.
, and
Vanhuyse
,
V. J.
,
1980
, “
An Elastic Stress–Strain Relation for Soft Biological Tissues Based on a Structural Model
,”
J. Biomech.
,
13
, pp.
463
468
.
47.
Shoemaker
,
P. A.
,
Schneider
,
D.
,
Lee
,
M. C.
, and
Fung
,
Y. C.
,
1986
, “
A Constitutive Model for Two-Dimensional Soft Tissues and Its Application to Experimental Data
,”
J. Biomech.
,
19
, pp.
695
702
.
48.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1992
, “
Characterization of Collagen Fiber Architecture in the Canine Central Tendon
,”
ASME J. Biomech. Eng.
,
114
, pp.
183
190
.
49.
Oomens
,
C. W. J.
,
Ratingen
,
M. R. V.
,
Janssen
,
J. D.
,
Kok
,
J. J.
, and
Hendriks
,
M. A. N.
,
1993
, “
A Numerical–Experimental Method for a Mechanical Characterization of Biological Materials
,”
J. Biomech.
,
26
, pp.
617
621
.
50.
Trowbridge
,
E. A.
, and
Crofts
,
C. E.
,
1986
, “
The Standardization Gauge Length: Its Influence on the Relative Extensibility of Natural and Chemically Modified Pericardium
,”
J. Biomech.
,
19
, pp.
1023
1033
.
51.
Hoffman
,
A. H.
, and
Grigg
,
P.
,
1984
, “
A Method for Measuring Strains in Soft Tissue
,”
J. Biomech.
,
10
, pp.
795
800
.
52.
Humphrey
,
J.
,
Vawter
,
D.
, and
Vito
,
R.
,
1987
, “
Quantification of Strains in Biaxially Tested Soft Tissues
,”
J. Biomech.
,
20
, pp.
59
65
.
You do not currently have access to this content.