The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturi-geometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor. [S0148-0731(00)00404-0]

1.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, New York.
2.
Lamson
,
T. C.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Rosenberg
,
G.
, and
Tarbell
,
J. M.
,
1991
, “
Real-Time In-Vitro Observation of Cavitation in a Prosthetic Heart Valve
,”
ASAIO J.
,
37
, pp.
M351–M353
M351–M353
.
3.
Graf
,
T.
,
Reul
,
H.
,
Detlefs
,
C.
,
Wilmes
,
R.
, and
Rau
,
G.
,
1994
, “
Causes and Formation of Cavitation in Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
3
, pp.
S49–S64
S49–S64
.
4.
Lee
,
C. S.
,
Chandran
,
K. B.
, and
Chen
,
L. D.
,
1996
, “
Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect
,”
ASME J. Biomech. Eng.
,
118
, pp.
97
105
.
5.
Hwang
,
N. H. C.
,
1998
, “
Cavitation Potential of Pyrolytic Carbon Heart Valve Prostheses: A Review and Current Status
,”
J. Heart Valve Dis.
,
7
, pp.
140
150
.
6.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
,
1993
, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
,
39
, pp.
M626–M633
M626–M633
.
7.
Garrison
,
L. A.
,
Lamson
,
T. C.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
,
Gaumond
,
R. P.
, and
Tarbell
,
J. M.
,
1994
, “
An In-Vitro Investigation of Prosthetic Heart Valve Cavitation in Blood
,”
J. Heart Valve Dis.
,
3
, pp.
S8–S24
S8–S24
.
8.
Bluestein
,
M.
, and
Mockros
,
L. F.
,
1968
, “
Hemolytic Effects of Energy Dissipation in Flowing Blood
,”
Med. Biol. Eng.
,
7
, pp.
1
16
.
9.
Freed
,
D.
,
Walker
,
W. F.
,
Dube
,
C. M.
, and
Tokuno
,
T.
,
1981
, “
Effects of Vaporous Cavitation Near Prosthetic Surfaces
,”
Trans. Am. Soc. Artif. Intern. Organs
,
27
, pp.
105
109
.
10.
Chambers
,
S. D.
,
Laberteaux
,
K. R.
,
Merz
,
S. I.
,
Montoya
,
J. P.
, and
Bartlett
,
R. H.
,
1996
, “
Effects of Static Pressure on Red Blood Cells on Removal of the Air Interface
,”
ASAIO J.
,
42
, pp.
947
950
.
11.
Williams, A. R., 1983, Ultrasound: Biological Effects and Potential Hazards, Academic Press, New York.
12.
Miller
,
D. L.
,
1988
, “
The Influence of Hematocrit on Hemolysis by Ultrasonically Activated Gas-Filled Micropores
,”
Ultrasound Med. Biol.
,
14
, pp.
293
297
.
13.
Church
,
C. C.
, and
Miller
,
M. W.
,
1983
, “
The Kinetics and Mechanics of Ultrasonically-Induced Cell Lysis Produced by Non-trapped Bubbles in a Rotating Culture Tube
,”
Ultrasound Med. Biol.
,
9
, pp.
385
393
14.
Yang, W.-J., 1974, “A Major Cause of Blood Trauma in Extracorporeal Circulation,” ASME Adv. Bioeng., pp. 167–168.
15.
Fung, Y.-C., 1990, Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York.
16.
Chambers, S. D., 1998, “Examination of the Effects of Subatmospheric Pressure on Erythrocytes and the Inception of Cavitation in Blood,” Ph.D. Thesis, University of Michigan, Ann Arbor, MI.
17.
Chambers
,
S. D.
,
Bartlett
,
R. H.
, and
Ceccio
,
S. L.
,
1999
, “
Determination of the In Vivo Cavitation Nuclei Characteristics of Blood
,”
ASAIO J.
,
45
, pp.
541
549
.
18.
Ceccio, S. L., Gowing, S., and Gindroz, B., 1995, “A Comparison of CSM Bubble Detection Methods.” Proc. ASME Symposium on Cavitation and Gas–Liquid Flow in Fluid Machinery and Devices, pp. 43–49.
19.
Yang, W.-J., 1989, Biothermal Fluid Thermal Sciences, Hemisphere Publishing, New York.
20.
Walder
,
D. N.
,
1948
, “
Serum Surface Tension and its Relation to the Decompression Sickness of Aviators
,”
J. Physiol. (Lond)
,
548
, pp.
48P–49P
48P–49P
.
21.
Ragone, D. V., 1995, Thermodynamics of Materials, I, Wiley, New York.
22.
Li
,
X. Z.
,
Barthes-Biesel
,
D.
, and
Helmy
,
A.
,
1988
, “
Large Deformations and Burst of a Capsule Freely Suspended in an Elongational Flow
,”
J. Fluid Mech.
,
187
, pp.
179
196
.
23.
Pozrikidis
,
C.
,
1990
, “
The Axisymmetric Deformation of a Red Blood Cell in Uniaxial Straining Stokes Flow
,”
J. Fluid Mech.
,
216
, pp.
231
254
.
24.
Chambers
,
S. D.
,
Ceccio
,
S. L.
,
Annich
,
G. A.
, and
Bartlett
,
R. H.
,
1999
, “
Extreme Negative Pressure does not Cause Erythrocyte Damage in Flowing Blood
,”
ASAIO J.
,
45
, pp.
431
435
.
25.
Sanderson, J. H., and Phillips, C. E., 1981, An Atlas of Laboratory Animal Haematology, Clarendon Press, Oxford.
26.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
, pp.
145
185
.
27.
d’Agostino
,
L.
, and
Acosta
,
A. J.
,
1991
, “
Separation and Surface Nuclei Effects in a Cavitation Susceptibility Meter
,”
ASME J. Fluids Eng.
,
113
, pp.
695
699
.
28.
Sallam
,
A. M.
, and
Hwang
,
N. C.
,
1984
, “
Human Red Cell Hemolysis in a Turbulent Jet Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
,
21
, pp.
783
797
.
29.
Tassin-Leger
,
A.
, and
Ceccio
,
S. L.
,
1998
, “
Examination of the Flow Near the Leading Edge of Attached Cavitation: Part I—Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
, pp.
61
90
.
You do not currently have access to this content.