To evaluate the local hemodynamic implications of coronary artery balloon angioplasty, computational fluid dynamics (CFD) was applied in a group of patients previously reported by [Wilson et al. (1988), 77, pp. 873–885] with representative stenosis geometry post-angioplasty and with measured values of coronary flow reserve returning to a normal range (3.6±0.3). During undisturbed flow in the absence of diagnostic catheter sensors within the lesions, the computed mean pressure drop Δp˜ was only about 1 mmHg at basal flow, and increased moderately to about 8 mmHg for hyperemic flow. Corresponding elevated levels of mean wall shear stress in the midthroat region of the residual stenoses, which are common after angioplasty procedures, increased from about 60 to 290 dynes/cm2 during hyperemia. The computations (Re˜e100-400;αe=2.25) indicated that the pulsatile flow field was principally quasi-steady during the cardiac cycle, but there was phase lag in the pressure drop−mean velocity Δpu¯ relation. Time-averaged pressure drop values, Δp˜, were about 20 percent higher than calculated pressure drop values, Δps, for steady flow, similar to previous in vitro measurements by Cho et al. (1983). In the throat region, viscous effects were confined to the near-wall region, and entrance effects were evident during the cardiac cycle. Proximal to the lesion, velocity profiles deviated from parabolic shape at lower velocities during the cardiac cycle. The flow field was very complex in the oscillatory separated flow reattachment region in the distal vessel where pressure recovery occurred. These results may also serve as a useful reference against catheter-measured pressure drops and velocity ratios (hemodynamic endpoints) and arteriographic (anatomic) endpoints post-angioplasty. Some comparisons to previous studies of flow through stenoses models are also shown for perspective purposes. [S0148-0731(00)00304-6]

1.
Cole
,
J. S.
, and
Hartley
,
C. J.
,
1977
, “
The Pulsed Doppler Coronary Artery Catheter: Preliminary Report of a Technique for Measuring Rapid Changes in Coronary Flow Velocity in Man
,”
Circulation
,
56
, pp.
18
25
.
2.
Wilson
,
R. F.
,
Johnson
,
M. R.
,
Marcus
,
M. L.
,
Alyward
,
P. E. G.
,
Skorton
,
D. J.
,
Collins
,
S.
, and
White
,
C. W.
,
1988
, “
The Effect of Coronary Angioplasty on Coronary Flow Reserve
,”
Circulation
,
77
, pp.
873
885
.
3.
Doucette
,
J. W.
,
Corl
,
P. D.
,
Payne
,
H. M.
,
Flynn
,
A. E.
,
Goto
,
M. N.
,
Nassi
,
M.
, and
Segal
,
J.
,
1992
, “
Validation of a Doppler Guide Wire for Intravascular Measurement of Coronary Artery Flow Velocity
,”
Circulation
,
85
, pp.
1899
1911
.
4.
Segal
,
J.
,
Kern
,
M. J.
,
Scott
,
N. A.
,
King
,
S. B.
, III
,
Doucette
,
J. W.
,
Heuser
,
R. R.
,
Ofili
,
E.
, and
Siegel
,
R.
,
1992
, “
Alterations of Phasic Coronary Artery Flow Velocity in Humans During Percutaneous Coronary Angioplasty
,”
J. Am. Coll. Cardiol.
,
20
, pp.
276
286
.
5.
Anderson
,
H. V.
,
Roubin
,
G. S.
,
Leimgruber
,
P. P.
,
Cox
,
W. R.
,
Douglas
,
J. S.
, Jr.
,
King
,
S. B.
, and
Gruentzig
,
A. R.
,
1986
, “
Measurement of Transstenotic Pressure Gradient During Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
,
73
, pp.
1223
1230
.
6.
Wilson
,
R. F.
, and
Laxson
,
D. D.
,
1993
, “
Caveat Emptor, A Clinician’s Guide to Assessing the Physiologic Significance of Arterial Stenoses
,”
Cathet. Cardiovasc. Diagn.
,
29
, pp.
93
98
.
7.
Emanuelsson
,
H.
,
Lamm
,
C.
,
Dohnal
,
M.
, and
Serruys
,
P. W.
,
1993
, “
High Fidelity Translesional Pressure Gradients During PTCA—Correlation With Quantitative Coronary Angiography
,”
J. Am. Coll. Cardiol.
,
21
, p.
340A
340A
.
8.
DeBruyne
,
B.
,
Pijls
,
N. H. J.
,
Paulus
,
W. J.
,
Vantrimpont
,
P. J.
,
Sys
,
S. U.
, and
Heyndrickx
,
G. R.
,
1993
, “
Transstenotic Coronary Pressure Gradient Measurement in Humans: In Vitro and In Vivo Evaluation of a New Pressure Monitoring Angioplasty Guide Wire
,”
J. Am. Coll. Cardiol.
,
22
, pp.
119
126
.
9.
Young
,
D. F.
, and
Tsai
,
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenosis—1 Steady Flow
,”
J. Biomech.
,
6
, pp.
395
410
.
10.
Mates
,
R. E.
,
Gupta
,
R. L.
,
Bell
,
A. C.
, and
Klocke
,
F. J.
,
1978
, “
Fluid Dynamics of Coronary Artery Stenosis
,”
Circ. Res.
,
42
, pp.
152
162
.
11.
Cho
,
Y. I.
,
Back
,
L. H.
,
Crawford
,
D. W.
, and
Cuffel
,
R. F.
,
1983
, “
Experimental Study of Pulsatile and Steady Flow Through a Smooth Tube and an Atherosclerotic Coronary Artery Casting of Man
,”
J. Biomech.
,
16
, pp.
933
946
.
12.
Deshpande
,
M. D.
,
Giddens
,
D. P.
, and
Mabon
,
R. F.
,
1976
, “
Steady Laminar Flow Through Modelled Vascular Stenoses
,”
J. Biomech.
,
9
, pp.
165
174
.
13.
Siegel
,
J. M.
,
Markou
,
C. P.
,
Ku
,
D. N.
, and
Hanson
,
S. R.
,
1994
, “
A Scaling Law for Wall Shear Rate Through an Arterial Stenosis
,”
ASME J. Biomech. Eng.
,
116
, pp.
446
451
.
14.
Back
,
L. H.
,
Radbill
,
J. R.
, and
Crawford
,
D. W.
,
1977
, “
Analysis of Pulsatile Viscous Blood Flow Through Diseased Coronary Arteries of Man
,”
J. Biomech.
,
10
, pp.
339
353
.
15.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel: Part 1, Steady Flows
,”
Biorheology
,
28
, pp.
241
262
.
16.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
1999
, “
Catheter Obstruction Effect on Pulsatile Flow Rate—Pressure Drop During Coronary Angioplasty
,”
ASME J. Biomech. Eng.
,
121
, pp.
281
289
.
17.
Back, L. H., and Denton, T. A., 1992, “Some Arterial Wall Shear Stress Estimates in Coronary Angioplasty,” Advances in Bioengineering, ASME BED-Vol. 22, pp. 337–340.
18.
Sibley
,
D. H.
,
Millar
,
H. D.
,
Hartley
,
C. J.
, and
Whitlow
,
P. L.
,
1986
, “
Subselective Measurement of Coronary Blood Flow Velocity Using a Steerable Doppler Catheter
,”
J. Am. Coll. Cardiol.
,
8
, pp.
1332
1340
.
19.
Baker, A. J., 1983, Finite Element Computational Fluid Mechanics, Hemisphere, New York, Chap. 4, pp. 153–230.
20.
Drexler
,
H.
,
Zeiher
,
A. M.
,
Wollschlager
,
H.
,
Meinertz
,
T.
,
Just
,
H.
, and
Bonzel
,
T.
,
1989
, “
Flow Dependent Coronary Artery Dilation in Humans
,”
Circulation
,
80
, pp.
466
474
.
21.
Vita
,
J. A.
,
Treasure
,
C. B.
,
Ganz
,
P.
,
Cox
,
D. A.
,
Fish
,
R. D.
, and
Selwyn
,
A. P.
,
1989
, “
Control of Shear Stress in the Epicardial Coronary Arteries of Humans: Impairment by Atherosclerosis
,”
J. Am. Coll. Cardiol.
,
14
, pp.
1193
1199
.
22.
Womersly
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol. (London)
,
127
, pp.
553
563
.
23.
Back
,
L. H.
, and
Roschke
,
E. J.
,
1972
, “
Shear Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion
,”
ASME J. Appl. Mech.
,
39
, pp.
677
681
.
24.
Azuma
,
T.
, and
Fukushima
,
T.
,
1976
, “
Flow Patterns in Stenotic Blood Vessel Models
,”
Biorheology
,
13
, pp.
337
355
.
25.
Yongchareon
,
W.
, and
Young
,
D. F.
,
1979
, “
Initiation of Turbulence in Models of Arterial Stenoses
,”
J. Biomech.
,
12
, pp.
185
196
.
26.
Sacks
,
A. H.
,
Tickner
,
E. G.
, and
MacDonald
,
I. B.
,
1971
, “
Criteria for the Onset of Vascular Murmurs
,”
Circ. Res.
,
29
, pp.
249
256
.
27.
Cho
,
Y. I.
,
Back
,
L. H.
, and
Crawford
,
D. W.
,
1985
, “
Experimental Investigation of Branch Flow Ratio, Angle, and Reynolds Number Effects on the Pressure and Flow Fields in Arterial Branch Models
,”
ASME J. Biomech. Eng.
,
107
, pp.
257
267
.
28.
FIDAP Manual, 1998, Fluent Inc., 10 Cavandish Court, Lebanon, NH 03766, USA.
29.
Back
,
L. H.
,
Kwack
,
E. Y.
, and
Back
,
M. R.
,
1996
, “
Flow Rate-Pressure Drop Relation in Coronary Angioplasty: Catheter Obstruction Effect
,”
ASME J. Biomech. Eng.
,
118
, pp.
83
89
.
30.
Back
,
M. R.
,
White
,
R. A.
,
Kwack
,
E. Y.
, and
Back
,
L. H.
,
1997
, “
Hemodynamic Consequences of Stenosis Remodeling During Coronary Angioplasty
,”
Angiology
,
48
, No.
2
, pp.
99
109
.
31.
Brown
,
G.
,
Bolson
,
E.
,
Frimer
,
M.
, and
Dodge
,
H. T.
,
1977
, “
Quantitative Coronary Arteriography: Estimation of Dimensions, Hemodynamic Resistance, and Atheroma Mass of Coronary Artery Lesions Using the Arteriogram and Digital Computations
,”
Circulation
,
55
, pp.
329
337
.
32.
Pritchard, W. F., Davies, P. F., Polacek, D. C., Derafshi, Z., Dull, R. O., Jones, S. A., and Giddens, D. P., 1992, “Influence of Hemodynamic Factors on the Adhesion Pattern of U937 Cells in a Flow Model: Implications in Atherosclerosis,” Advances in Bioengineering, ASME BED-Vol. 22, pp. 139–142.
33.
Back
,
L. H.
,
1975
, “
Theoretical Investigation of Platelet Embolus Production in Atherosclerotic Coronary Arteries
,”
Math. Biosci.
,
25
, pp.
273
307
.
34.
Back
,
L. H.
, and
Crawford
,
D. W.
,
1992
, “
Wall Shear Stress Estimates in Coronary Artery Constrictions
,”
ASME J. Biomech. Eng.
,
114
, pp.
515
520
.
35.
Cassanova
,
R. A.
, and
Giddens
,
D. P.
,
1978
, “
Disorder Distal to Modeled Stenoses in Steady and Pulsatile Flow
,”
J. Biomech.
,
11
, pp.
441
453
.
You do not currently have access to this content.