This paper describes a computational and experimental investigation of flow in a prototype model geometry of a fully occluded 45 deg distal end-to-side anastomosis. Previous investigations have considered a similar configuration where the centerlines of the bypass and host vessels lie within a plane, thereby producing a plane of symmetry within the flow. We have extended these investigations by deforming the bypass vessel out of the plane of symmetry, thereby breaking the symmetry of the flow and producing a nonplanar geometry. Experimental data were obtained using magnetic resonance imaging of flow within perspex models and computational data were obtained from simulations using a high-order spectral/hp element method. We found that the nonplanar three-dimensional flow notably alters the distribution of wall shear stress at the bed of the anastomosis, reducing the peak wall shear stress peak by approximately 10 percent when compared with the planar model. Furthermore, an increase in the absolute flux of velocity into the occluded region, proximal to the anastomosis, of 80 percent was observed in the nonplanar geometry when compared with the planar geometry. [S0148-0731(00)00401-5]

1.
Bryan
,
A.
, and
Angelini
,
G.
,
1994
, “
The Biology of Saphenous Vein Graft Occlusion: Etiology and Strategies for Prevention
,”
Curr. Opin. Cardiol.
,
9
, pp.
641
649
.
2.
Davies
,
P.
,
1995
, “
Flow Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
, pp.
519
560
.
3.
McIntire, L., 1997, “Differential Gene Regulation Induced by Flow in Vascular Cells: Implications for Gene Therapy,” in: Proc. International Conference on New Frontiers in Biomechanical Engineering, Bioengineering Division, JSME.
4.
Ojha
,
M.
,
Ethier
,
C.
,
Johnston
,
K.
, and
Cobbold
,
R.
,
1990
, “
Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model
,”
J. Vasc. Surg.
,
20
, pp.
311
317
.
5.
Sottiuari
,
V.
,
Yao
,
J.
,
Batson
,
R.
,
Sue
,
S.
,
Jones
,
R.
, and
Nakamura
,
Y.
,
1989
, “
Distal Anastomotic Intimal Hyperplasia: Hystopathologic Character and Biogenesis
,”
Ann. Vasc. Surg.
,
29
, pp.
26
33
.
6.
Bassiouny
,
H.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D.
, and
Zarins
,
C.
,
1992
, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
,
15
, pp.
708
717
.
7.
Ojha
,
M.
,
1993
, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
,
114
, No.
12
, pp.
1377
1388
.
8.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Archie
,
J.
,
1997
, “
Haemodynamic Simulation and Computer-Aided Designs of Graft-Artery Junctions
,”
ASME J. Biomech. Eng.
,
119
, pp.
343
348
.
9.
Ku
,
D.
, and
Giddens
,
D.
,
1983
, “
Pulsatile Flow in a Model Carotid Bifurcation
,”
Atherosclerosis
,
3
, pp.
31
39
.
10.
Friedman
,
M.
,
Bargeron
,
C.
,
Deters
,
O.
,
Hutchins
,
G.
, and
Mark
,
F.
,
1987
, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
,
68
, pp.
27
33
.
11.
Yamamoto
,
T.
,
Tanaka
,
H.
,
Jones
,
C. J. H.
,
Lever
,
M.
,
Parker
,
K. H.
,
Kimura
,
A.
,
Hiramatsu
,
O.
,
Ogasawara
,
Y.
,
Tsujioka
,
K.
,
Caro
,
C. G.
, and
Kajiya
,
F.
,
1992
, “
Blood Velocity Profiles in the Origin of the Canine Renal Artery and Their Relevance in the Localization and Development of Atherosclerosis
,”
Arterioscler. Thromb.
,
12
, No.
5
, pp.
626
632
.
12.
Asakura
,
T.
, and
Karino
,
T.
,
1990
, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
,
66
, pp.
1045
1066
.
13.
Steinman
,
D.
,
Frayne
,
R.
,
Zhang
,
X.-D.
,
Butt
,
B.
, and
Ethier
,
C.
,
1996
, “
MR Measurements and Numerical Simulation of Steady Flow in an End-to-Side Anastomosis Model
,”
J. Biomech.
,
29
, No.
4
, pp.
537
542
.
14.
Hofer
,
M.
,
Rappitsch
,
G.
,
Perktold
,
K.
,
Trubel
,
W.
, and
Schima
,
H.
,
1996
, “
Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Initimal Hyperplasia
,”
J. Biomech.
,
29
, pp.
1297
1308
.
15.
Henry
,
F.
,
Collins
,
M.
,
Hughes
,
P.
, and
How
,
T.
,
1996
, “
Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses
,”
ASME J. Biomech. Eng.
,
118
, pp.
302
310
.
16.
White
,
S.
,
Zarins
,
C.
,
Giddens
,
D.
,
Bassiouny
,
H.
,
Loth
,
F.
,
Jones
,
S.
, and
Glagov
,
S.
,
1993
, “
Hemodynamics Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number and Hood Length
,”
ASME J. Biomech. Eng.
,
114
, pp.
104
115
.
17.
Caro
,
C.
,
Doorly
,
D.
,
Tarnawski
,
M.
,
Scott
,
K.
,
Long
,
Q.
, and
Dumoulin
,
C.
,
1996
, “
Non-Planar Curvature and Branching of Arteries and Non-Planar-Type Flow
,”
Proc. R. Soc. London, Ser. A
,
452
, pp.
185
197
.
18.
Sherwin, S., Shah, O., Doorly, D., Mclean, M., Watkins, N., Caro, C., Peiro, J., Tarnawski, M., and Dumoulin, C., 1997, “Visualisation and Computational Study of Flow in Model Planar and Non-planar End-to-Side Arterial Bypass Grafts,” Physiological Society Abstracts, Plymouth.
19.
Ding, Z., and Friedman, M., 1997, “Variability in Planarity of the Aortic Bifurcation Measured From Magnetic Resonance Images,” in: Bioengineering Conference, ASME BED-Vol. 35.
20.
DaSilva
,
A.
,
Carpenter
,
T.
,
How
,
T.
, and
Harris
,
P.
,
1997
, “
Stable Vortices Within Vein Cuffs Inhibit Anastomotic Myointimal Hyperplasia?
Eur. J. Vasc. Endovasc Surg.
,
14
, No.
3
, pp.
157
163
.
21.
Loth
,
F.
,
Jones
,
S.
,
Giddens
,
D.
,
Bassiouny
,
H.
,
Glagov
,
S.
, and
Zarins
,
C.
,
1997
, “
Measurement of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
119
, No.
2
, pp.
187
195
.
22.
Sherwin
,
S.
, and
Karniadakis
,
G.
,
1996
, “
Tetrahedral hp Finite Elements: Algorithms and Flow Simulations
,”
J. Comp. Physiol.
,
124
, pp.
14
45
.
23.
Moore
,
J. E.
,
Maiser
,
S.
,
Ku
,
D.
, and
Bo¨siger
,
P.
,
1994
, “
Haemodynamics in the Abdominal Aorta: a Comparison of In-Vitro and In-Vivo Measurements
,”
J. Appl. Physiol.
,
76
, pp.
1520
1527
.
24.
Friedman
,
M. H.
,
1993
, “
Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas
,”
ASME J. Biomech. Eng.
,
115
, No.
4
, pp.
595
601
.
25.
Karniadakis
,
G.
,
Israeli
,
M.
, and
Orszag
,
S.
,
1991
, “
High-Order Splitting Methods for the Incompressible Navier–Stokes Equations
,”
J. Comp. Physiol.
,
97
, pp.
414
443
.
26.
Peiro, J., and Sayma, A. I., 1995, “A 3-D Unstructured Multigrid Navier–Stokes Solver,” in: K. W. Morton and M. J. Baines, eds., Numerical Methods for Fluid Dynamics, V, Oxford University Press.
27.
Peraire
,
J.
,
Peiro
,
J.
, and
Morgan
,
K.
,
1993
, “
Multigrid Solution of the 3-D Compressible Euler Equations on Unstructured Tetrahedral Grids
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1029
1044
.
28.
Dean
,
W.
,
1928
, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
5
, pp.
673
695
.
29.
Tuttle
,
E.
,
1990
, “
Laminar Flow in Twisted Pipes
J. Fluid Mech.
,
219
, pp.
545
570
.
30.
Kao
,
H.
,
1987
, “
Torsion Effects on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
,
184
, pp.
335
356
.
31.
Zabielski
,
L.
, and
Mestel
,
A.
,
1998
, “
Steady Flow in a Helically Symmetric Pipe
,”
J. Fluid Mech.
,
370
, pp.
297
320
.
32.
Doorly, D., Peiro, J., Sherwin, S., Shah, O., Caro, C., Tarnawski, M., Maclean, M., Dumoulin, C., and Axel, L., 1997, “Helix and Model Graft Flows: MRI Measurements and CFD Simulations,” Proc. ASME FED Meeting, ASME Paper No. FEDSM-97-3423.
You do not currently have access to this content.