To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV’s small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure–strain relationship to assess the effects of boundary tethering forces. Natural and glutaraldehyde (GL) treated cusps were subjected to an extensive biaxial testing protocol in which the ratios of the axial tensions were held at constant values. Results indicated that the local fiber architecture clearly dominated cuspal deformation, and that the tethering effects at the specimen boundaries were negligible. Due to unique aspects of cuspal fiber architecture, the most uniform region of deformation was found at the lower portion as opposed to the center of the cuspal specimen. In general, the circumferential strains were much smaller than the radial strains, indicating a profound degree of mechanical anisotropy, and that natural cusps were significantly more extensible than the GL treated cusps. Strong mechanical coupling between biaxial stretch axes produced negative circumferential strains under equibiaxial tension. Further, the large radial strains observed could not be explained by uncrimping of the collagen fibers, but may be due to large rotations of the highly aligned, circumferential-oriented collagen fibers in the fibrosa. In conclusion, this study provides new insights into the AV cusp’s structure–function relationship in addition to requisite data for constitutive modeling. [S0148-0731(00)00901-8]

1.
Thubrikar, M., 1990, The Aortic Valve, CRC, Boca Raton.
2.
Lee
,
J. M.
,
Boughner
,
D. R.
, and
Courtman
,
D. W.
,
1984
, “
The Glutaraldehyde-Stabilized Porcine Aortic Valve Xenograft. II. Effect of Fixation With or Without Pressure on the Tensile Viscoelastic Properties of the Leaflet Material
,”
J. Biomed. Mater. Res.
,
18
, pp.
79
98
.
3.
Lee
,
J. M.
,
Courtman
,
D. W.
, and
Boughner
,
D. R.
,
1984
, “
The Glutaraldehyde-Stabilized Porcine Aortic Valve Xenograft. I. Tensile Viscoelastic Properties of the Fresh Leaflet Material
,”
J. Biomed. Mater. Res.
,
18
, pp.
61
77
.
4.
Vesely
,
I.
, and
Noseworthy
,
R.
,
1992
, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Biomech.
,
25
, pp.
101
113
.
5.
Mayne
,
A. S. D.
,
Christie
,
G. W.
,
Smaill
,
B. H.
,
Hunter
,
P. J.
, and
Barratt-Boyes
,
B. G.
,
1989
, “
An Assessment of the Mechanical Properties of Leaflets From Four Second-Generation Porcine Bioprosthesis With Biaxial Testing Techniques
,”
J. Thorac. Cardiovasc. Surg.
,
98
, pp.
170
180
.
6.
Christie
,
G. W.
, and
Barratt-Boyes
,
B. G.
,
1995
, “
Age-Dependent Changes in the Radial Stretch of Human Aortic Valve Leaflets Determined by Biaxial Stretching
,”
Ann. Thorac. Surg.
,
60
, pp.
156
159
.
7.
Brossollet
,
L. J.
, and
Vito
,
R. P.
,
1996
, “
A New Approach to Mechanical Testing and Modeling of Biological Tissues, With Application to Blood Vessels
,”
ASME J. Biomech. Eng.
,
118
, pp.
433
439
.
8.
Lanir
,
Y.
, and
Fung
,
Y. C.
,
1974
, “
Two-Dimensional Mechanical Properties of Rabbit Skin—I. Experimental System
,”
J. Biomech.
,
7
, pp.
29
34
.
9.
Lanir
,
Y.
, and
Fung
,
Y. C.
,
1974
, “
Two-Dimensional Mechanical Properties of Rabbit Skin—II. Experimental Results
,”
J. Biomech.
,
7
, pp.
171
182
.
10.
Hunter
,
P. J.
,
Smaill
,
B. H.
, and
Nielson
,
P. M. F.
,
1986
, “
Biaxial Mechanical Testing of Biological Tissue
,”
Biophys. J.
,
49
, p.
90
90
.
11.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1993
, “
Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium
,”
ASME J. Biomech. Eng.
,
115
, pp.
202
205
.
12.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1998
, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
, pp.
892
902
.
13.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1998
, “
The Aortic Valve Microstructure: Effects of Trans-Valvular Pressure
,”
J. Biomed. Mater. Res.
,
41
, pp.
131
141
.
14.
Sacks
,
M. S.
,
1999
, “
A Method for Planar Biaxial Testing That Includes In-Plane Shear
,”
ASME J. Biomech. Eng.
,
121
, pp.
551
555
.
15.
Nielsen
,
P. M. F.
,
Hunter
,
P. J.
, and
Smaill
,
B. H.
,
1991
, “
Biaxial Testing of Membrane Biomaterials: Testing Equipment and Procedures
,”
ASME J. Biomech. Eng.
,
113
, pp.
295
300
.
16.
Spencer, A. J. M., 1980, Continuum Mechanics, Longman Scientific & Technical, New York.
17.
Bathe, K. J., 1982, Finite Elements Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
18.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, Numerical Recipes in C, Cambridge University Press, Cambridge.
19.
Chew
,
P. H.
,
Yin
,
F. C. P.
, and
Zeger
,
S. L.
,
1986
, “
Biaxial Stress–Strain Properties of Canine Pericardium
,”
J. Mol. Cell. Cardiol.
,
18
, pp.
567
578
.
20.
Humphrey
,
J. D.
, and
Yin
,
F. C. P.
,
1988
, “
Biaxial Mechanical Behavior of Excised Epicardium
,”
ASME J. Biomech. Eng.
,
110
, pp.
349
351
.
21.
Choi
,
H. S.
, and
Vito
,
R. P.
,
1990
, “
Two Dimensional Stress–Strain Relationship for Canine Pericardium
,”
ASME J. Biomech. Eng.
,
112
, pp.
153
159
.
22.
Oomens
,
C. W. J.
,
Ratingen
,
M. R. V.
,
Janssen
,
J. D.
,
Kok
,
J. J.
, and
Hendriks
,
M. A. N.
,
1993
, “
A Numerical–Experimental Method for a Mechanical Characterization of Biological Materials
,”
J. Biomech.
,
26
, pp.
617
621
.
23.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
, pp.
753
756
.
24.
Viidik, A., 1980, “Interdependence between Structure and Function in Collagenous Tissues,” Biology of Collagen, Viidik, A., and Vuust, J., eds., Academic Press, London.
25.
Christie, G., and Stephenson, R., 1989, “Modelling the Mechanical Role of the Fibrosa and Ventricularis in the Porcine Bioprosthesis,” International Symposium on Surgery for Heart Valve Disease, ICR Publishers, London, pp. 815–824.
26.
Hilbert
,
S.
,
Sword
,
L.
,
Batchelder
,
K.
,
Barrick
,
M.
, and
Ferrans
,
V.
,
1996
, “
Simultaneous Assessment of Bioprosthetic Heart Valve Biomechanical Properties and Collagen Crimp Length
,”
J. Biomed. Mater. Res.
,
31
, pp.
503
509
.
27.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1997
, “
A SALS Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
,
25
, pp.
678
689
.
28.
Rousseau
,
E. P. M.
,
Sauren
,
A. A. H. J.
,
Van Hout
,
M. C.
, and
Van Steenhoven
,
A. A.
,
1983
, “
Elastic and Viscoelastic Material Behaviour of Fresh and Glutaraldehyde-Treated Porcine Aortic Valve Tissue
,”
J. Biomech.
,
16
, pp.
339
348
.
29.
Sauren
,
A.
,
van Hout
,
M.
,
van Steenhoven
,
A.
,
Veldpaus
,
F.
, and
Janssen
,
J.
,
1983
, “
The Mechanical Properties of Porcine Aortic Valve Tissues
,”
J. Biomech.
,
16
, pp.
327
337
.
30.
Vesely
,
I.
,
1991
, “
Analysis of the Medtronic Intact Bioprosthetic Valve
,”
J. Thorac. Cardiovasc. Surg.
,
101
, pp.
90
99
.
31.
Vesely
,
I.
,
Lozon
,
A.
, and
Talman
,
E.
,
1993
, “
Is Zero-Pressure Fixation of Bioprosthetic Valves Truly Stress Free?
J. Thorac. Cardiovasc. Surg.
,
106
, pp.
288
298
.
32.
Christie
,
G. W.
,
1992
, “
Anatomy of Aortic Heart Valve Leaflets: The Influence of Glutaraldehyde Fixation on Function
,”
Eur. J. Cardio-thoracic Surg.
,
6
, pp.
S25–S33
S25–S33
.
33.
Schoen
,
F.
,
1997
, “
Aortic Valve Structure-Function Correlations: Role of Elastic Fibers No Longer a Stretch of the Imagination
,”
J. Heart Valve Disease
,
6
, pp.
1
6
.
34.
Lee
,
M. C.
,
LeWinter
,
X. X.
,
Freeman
,
G.
,
Shabetai
,
R.
, and
Fung
,
Y. C.
,
1985
, “
Biaxial Mechanical Properties of the Pericardium in Normal and Volume Overload Dogs
,”
Am. J. Physiol
,
249
, pp.
H222–H230
H222–H230
.
35.
Thubrikar
,
M.
,
Aouad
,
J.
, and
Nolan
,
S. P.
,
1986
, “
Comparison of the In-Vivo and In-Vitro Mechanical Properties of Aortic Valve Leaflets
,”
J. Thorac. Cardiovasc. Surg.
,
92
, pp.
29
36
.
36.
May-Newman
,
K.
, and
Yin
,
F. C. P.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol
,
269
, pp.
H1319–H1327
H1319–H1327
.
37.
Lo
,
D.
, and
Vesely
,
I.
,
1995
, “
Biaxial Strain Analysis of the Porcine Aortic Valve
,”
Ann. Thorac. Surg.
,
60
, pp.
374
378
.
38.
Billiar, K., 1998, “A Structurally Guided Constitutive Model for Aortic Valve Bioprostheses: Effects of Glutaraldehyde Treatment and Mechanical Fatigue,” Bioengineering, Philadelphia, University of Pennsylvania.
39.
Clark
,
R. E.
, and
Finke
,
E. C.
,
1974
, “
Scanning and Light Microscopy of Human Aortic Leaflets in Stressed and Relaxed States
,”
J. Thorac. Cardiovasc. Surg.
,
67
, pp.
792
804
.
40.
Christie
,
G. W.
,
1992
, “
Computer Modelling of Bioprosthetic Heart Valves
,”
Eur. J. Cardio-thoracic Surg.
,
6
, pp.
S95–S101
S95–S101
.
41.
Cataloglu
,
A.
,
Clark
,
R. E.
, and
Gould
,
P. L.
,
1977
, “
Stress Analysis of Aortic Valve Leaflets With Smoothed Geometrical Data
,”
J. Biomech.
,
10
, pp.
153
158
.
42.
Hamid
,
M.
,
Sabbah
,
H.
, and
Stein
,
P.
,
1985
, “
Finite Element Evaluation of Stresses on Closed Leaflets of Bioprosthetic Heart Valves With Flexible Stents
,”
Finite Elem. Anal. Design
,
1
, pp.
213
225
.
43.
Rousseau
,
E.
,
van Steenhoven
,
A.
, and
Janssen
,
J.
,
1988
, “
A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis
,”
J. Biomech.
,
21
, pp.
545
562
.
44.
Vesely
,
I.
, and
Boughner
,
D.
,
1989
, “
Analysis of the Bending Behaviour of Porcine Xenograft Leaflets and of Natural Aortic Valve Material: Bending Stiffness, Neutral Axis and Shear Measurements
,”
J. Biomech.
,
22
, pp.
655
671
.
45.
Thubrikar
,
M.
,
Skinner
,
J.
,
Eppink
,
R.
, and
Nolan
,
S.
,
1982
, “
Stress Analysis of Porcine Bioprosthetic Heart Valves In Vivo
,”
J. Biomed. Mater. Res.
,
16
, p.
811
811
.
46.
Talman
,
E. A.
, and
Boughner
,
D. R.
,
1995
, “
Glutaraldehyde Fixation Alters the Internal Shear Properties of Porcine Aortic Heart Valve Tissue
,”
Ann. Thorac. Surg.
,
60
, pp.
S369–S373
S369–S373
.
47.
Gloeckner
,
D.
,
Billiar
,
K.
, and
Sacks
,
M.
,
1999
, “
Effects of Mechanical Fatigue on the Bending Properties of the Porcine Bioprosthetic Heart Valve
,”
ASAIO J.
,
45
, pp.
59
63
.
You do not currently have access to this content.