Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R ≥ 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

1.
Abramowitz, M., and Stegun, I., 1965, Handbook of Mathematical Functions, Dover, NY.
2.
Arutyunyan, N. Kh., 1966, Some Problems in the Theory of Creep, Pergamon, Oxford, UK.
3.
Findley, W. N., Lai, J. S., and Onaran, K., 1976, Creep and Relaxation of Nonlinear Viscoelastic Materials, North Holland, Amsterdam.
4.
Fung, Y. C., 1972, “Stress strain history relations of soft tissues in simple elongation,” in: Biomechanics, Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M., eds., Prentice-Hall, Englewood Cliffs, NJ.
5.
Graf
B. K.
,
Vanderby
R.
,
Ulm
M. J.
,
Rogalski
R. P.
, and
Thielke
R. J.
,
1994
, “
Effect of preconditioning on the viscoelastic response of primate patellar tendon
,”
Arthroscopy
, Vol.
10
, pp.
90
96
.
6.
Green
E.
, and
Rivlin
R. S.
,
1957
, “
The mechanics of non-linear materials with memory
,”
Arch. Rational Mech. Anal.
, Vol.
1
, pp.
1
21
.
7.
Haut
R. C.
, and
Little
R. W.
,
1972
, “
A constitutive equation for collagen fibers
,”
J. Biomech.
,
5
(
5
), pp.
423
430
.
8.
Hurschler
C.
,
Loitz-Ramage
B.
, and
Vanderby
R.
,
1997
, “
A structurally based stress-stretch relationship for tendon and ligament
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
119
, pp.
392
399
.
9.
Johnson
G. A.
,
Livesay
G. A.
,
Woo
S. L.-Y.
, and
Rajagopal
K. R.
,
1996
, “
A Single Integral Finite Strain Viscoelastic Model of Ligaments and Tendons
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
118
, pp.
221
226
.
10.
Kwan
M. K.
,
Lin
T. H.-C.
, and
Woo
S. L.-Y.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
Journal of Biomechanics
, Vol.
26
, pp.
447
452
.
11.
Lai
J. S. Y.
, and
Findley
W. N.
,
1968
, “
Prediction of uniaxial stress relaxation from creep of nonlinear viscoelastic material
,”
Trans. Soc. Rheology
, Vol.
12
, pp.
243
257
.
12.
Lakes
R. S.
,
Katz
J. L.
, and
Sternstein
S. S.
,
1979
, “
Viscoelastic properties of wet cortical bone: Part I, torsional and biaxial studies
,”
Journal of Biomechanics
, Vol.
12
, pp.
657
678
.
13.
Lakes
R. S.
, and
Katz
J. L.
,
1979
, “
Viscoelastic properties of wet cortical bone: Part III, A non-linear constitutive equation
,”
Journal of Biomechanics
, Vol.
12
, pp.
689
698
.
14.
Lockett, F. J., 1972, Nonlinear Viscoelastic Solids, Academic Press, NY.
15.
Molinari
A.
,
1973
, “
Sur la relation entre fluage et relaxation en viscoe´lastite´ non line´aire
,”
Comptes Rendus de l’Academie des Sciences, Serie I, Mathematiques
, Vol.
27
, A, pp.
621
623
.
16.
Pioletti
D. P.
,
Rakotomanana
L. R.
,
Benvenuti
J. F.
,
Leyvraz
P. F.
,
1998
, “
Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons
,”
J. Biomech.
,
31
(
8
), pp.
753
757
.
17.
Popov
E. P.
,
1947
, “
Correlation of tension creep tests with relaxation tests
,”
J. Appl. Mechanics
, Vol.
14
, pp.
135
142
.
18.
Schapery
R. A.
,
1969
, “
On the characterization of nonlinear viscoelastic materials
,”
Polymer Engineering and Science
, Vol.
9
, pp.
295
310
.
19.
Schapery, R. A., 1999, private communication.
20.
Thornton
G. M.
,
Oliynyk
A.
,
Frank
C. B.
, and
Shrive
N. G.
,
1997
, “
Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament
,”
J. Orthop. Research.
, Vol.
15
, pp.
652
656
.
21.
Turner, S., 1973, “Creep in glassy polymers,” in: The Physics of Glassy Polymers, Howard, R. H., ed., Wiley, New York.
22.
Vanderby, R., Thielke, R. J., Grood, E. S., and Graf, B. K., 1999, “Tension induced changes in a rat medial collateral ligament,” accepted for ASME JOURNAL OF BIOMECHANICAL ENGINEERING.
23.
Viidik
A.
,
1972
, “
Simultaneous mechanical and light microscopic studies of collagen fibers
,”
Z. Anat. Entwick. Gesch.
, Vol.
136
, pp.
204
212
.
24.
Ward
I. M.
, and
Onat
E. T.
,
1963
, “
Non-linear mechanical behaviour of oriented polypropylene
,”
J. Mech. Phys. Solids
, Vol.
11
, pp.
217
229
.
25.
Woo
S. L.-Y.
,
Gomez
M. A.
, and
Akeson
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
293
298
.
26.
Woo
S. L.-Y.
,
1982
, “
Mechanical Properties of Tendons and Ligaments I. Quasistatic and Nonlinear Viscoelastic Properties
,”
Biorheology
, Vol.
19
, pp.
385
396
.
This content is only available via PDF.
You do not currently have access to this content.