These studies sought to investigate quantitative relationships between the complex composite structure and mechanical properties of tendon. The isolated mouse tail tendon fascicle was chosen as an appropriate model for these so-called “structure-function” investigations. Specifically, collagen fibril diameters and mechanical properties were measured in fascicles from immature (3 week) control, adult (8 week) control, and adult (8 week) Mov13 transgenic mice. Results demonstrated a moderate correlation between mean fibril diameter and fascicle stiffness (r = 0.73, p = 0.001) and maximum load (r = 0.75, p < 0.001), whereas a weak correlation with fascicle modulus (r = 0.39, p = 0.11) and maximum stress (r = 0.48, p = 0.04). An analysis of pooled within-group correlations revealed no strong structure-function trends evidenced at the local or group level, indicating that correlations observed in the general structure-function analyses were due primarily to having three different experimental groups, rather than significant correlations of parameters within the groups.

1.
Bay
B.
,
Howell
S. M.
,
Evans
B.
, and
Patrissi
G. A.
,
1993
, “
An analysis of collagen fiber distributions as a predictor of modulus in a sheep anterior cruciate ligament
,”
Trans. Orthop. Res. Soc.
, Vol.
18
(
2
), p.
333
333
.
2.
Binkley, J. M., and Peat, M., 1986, “The effects of immobilization on the ultrastructure and mechanical properties of the medial collateral ligament of rats,” Clin. Orthop. Rel. Res., pp. 301–308.
3.
Birk
D. E.
,
Zycband
E. I.
,
Winkelmann
D. A.
, and
Trelstad
R. L.
,
1989
, “
Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly
,”
Proc. Natl. Acad. Sci. USA
, Vol.
86
(
12
), pp.
4549
4553
.
4.
Birk
D. E.
,
Zycband
E. I.
,
Winkelmann
D. A.
, and
Trelstad
R. L.
,
1990
, “
Collagen fibrillogenesis in situ. Discontinuous segmental assembly in extracellular compartments
,”
Ann. N.Y. Acad. Sci.
, Vol.
580
, pp.
176
194
.
5.
Bonadio
J.
,
Saunders
T. L.
,
Tsai
E.
,
Goldstein
S. A.
,
Morris-Wiman
J.
, and
Brinkley
L.
,
1990
, “
Transgenic mouse model of the mild dominant form of osteogenesis imperfecta
,”
Proc. Natl. Acad. Sci. USA
, Vol.
87
, pp.
7145
7149
.
6.
Butler
D. L.
,
Kay
M. D.
, and
Stouffer
D. C.
,
1986
, “
Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments
,”
J. Biomech.
, Vol.
19
, pp.
425
432
.
7.
Craig
A. S.
,
Eikenberry
E. F.
, and
Parry
D. A.
,
1987
, “
Ultrastructural organization of skin: classification on the basis of mechanical role
,”
Connect. Tissue Res.
, Vol.
16
(
3
), pp.
213
223
.
8.
Derwin
K. A.
,
Soslowsky
L. J.
,
Flanagan
C. L.
,
Edwards
C. A.
, and
Jepsen
K. J.
,
1994
a, “
Alterations in tail tendon ultrastructure and collagen content in the transgenic Mov13 mouse
,”
Trans. Orthop. Res. Soc.
, Vol.
9
(
1
), p.
44
44
.
9.
Derwin
K. A.
,
Soslowsky
L. J.
,
Green
W. D. K.
, and
Elder
S. H.
,
1994
b, “
A new optical system for the determination of deformations and strains: calibration characteristics and experimental results
,”
J. Biomech.
, Vol.
27
(
10
), pp.
1277
1285
.
10.
Derwin
K. A.
, and
Soslowsky
L. J.
,
1995
, “
The tail tendon fascicle of the Mov13 mouse as a model for studying structure-function
,”
Trans. Orthop. Res. Soc.
, Vol.
20
(
1
), pp.
13
13
.
11.
Flint
M. H.
,
Craig
A. S.
,
Reilly
H. C.
,
Gillard
G. C.
, and
Parry
D. A.
,
1984
, “
Collagen fibril diameters and glycosaminoglycan content of skins—indices of tissue maturity and function
,”
Connect. Tissue Res.
, Vol.
13
(
1
), pp.
69
81
.
12.
Haut
R. C.
,
1983
, “
Age-dependent influence of strain rate on the tensile failure of rat- tail tendon
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
105
, pp.
296
299
.
13.
Haut
R. C.
,
1985
, “
The effect of a lathyritic diet on the sensitivity of tendon to strain rate
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
(
2
), pp.
166
174
.
14.
Haut
R. C.
,
1986
, “
The influence of specimen length on the tensile failure properties of tendon collagen
,”
J. Biomech.
, Vol.
19
(
11
), pp.
951
5
.
15.
Hurschler
C.
,
Loitz-Ramage
B.
, and
Vanderby
R.
,
1997
, “
A structurally based stress-stretch relationship for tendon and ligament
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
119
, pp.
392
399
.
16.
Kronick
P. L.
, and
Sacks
M. S.
,
1994
, “
Matrix macromolecules that affect the viscoelasticity of calfskin
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
140
145
.
17.
Lam
T. C.
,
Thomas
C. G.
,
Shrive
N. G.
,
Frank
C. B.
, and
Sabiston
C. P.
,
1990
, “
The effects of temperature on the viscoelastic properties of the rabbit medial collateral ligament
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
(
2
), pp.
147
52
.
18.
Liao
H.
, and
Belkoff
S. M.
,
1999
, “
A failure model for ligaments
,”
J. Biomech.
, Vol.
32
(
2
), pp.
183
188
.
19.
Moore
M. J.
, and
De Beaux
A.
,
1987
, “
A quantitative ultrastructural study of rat tendon from birth to maturity
,”
J. Anat.
, Vol.
153
, pp.
163
169
.
20.
Parry
D. A.
, and
Craig
A. S.
,
1977
, “
Quantitative electron microscope observations of the collagen fibrils in rat-tail tendon
,”
Biopolymers
, Vol.
16
(
5
), pp.
1015
1031
.
21.
Parry
D. A.
, and
Craig
A. S.
,
1978
, “
Collagen fibrils and elastic fibers in rat-tail tendon: an electron microscopic investigation
,”
Biopolymers
, Vol.
17
(
4
), pp.
843
845
.
22.
Parry
D. A.
,
Barnes
G. R.
, and
Craig
A. S.
,
1978
, “
A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties
,”
Proc. R. Soc. Lond. (Biol.)
, Vol.
203
(
1152
), pp.
305
321
.
23.
Parry
D. A.
,
1988
, “
The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue
,”
Biophys. Chem.
, Vol.
29
(
1-2
), pp.
195
209
.
24.
Rigby
B. J.
,
Hirai
N.
,
Spikes
J. D.
, and
Eyring
H.
,
1959
, “
The mechanical properties of rat tail tendon
,”
J. Gen. Phys.
, Vol.
43
, pp.
265
283
.
25.
Schnieke
A.
,
Harbes
K.
, and
Jaenisch
R.
,
1983
, “
Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha1 (I) collagen gene
,”
Nature
, Vol.
304
, pp.
315
320
.
26.
Scott
J. E.
,
Orford
C. R.
, and
Hughes
E. W.
,
1981
, “
Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation
,”
Biochem. J.
, Vol.
195
(
3
), pp.
573
81
.
27.
Shrive
N.
,
Chimich
D.
,
Marchuk
L.
,
Wilson
J.
,
Brant
R.
, and
Frank
C.
,
1995
, “
Soft-tissue “flaws” are associated with the material properties of the healing rabbit medial collateral ligament
,”
J. Orthop. Res.
, Vol.
13
, pp.
923
929
.
28.
Torp, S., Baer, E., and Friedman, B., 1975, “Effects of age and of mechanical deformation on the ultrastructure of tendon,” Structure of Fibrous Biopolymers, E. D. T. Atkins and A. Keller, eds., Butterworths, London, Ch. 14, pp. 223–250.
29.
Trotter
J. A.
, and
Koob
T. J.
,
1989
, “
Collagen and proteoglycan in a sea urchin ligament with mutable mechanical properties
,”
Cell Tiss. Res.
, Vol.
258
, pp.
527
539
.
30.
Woo
S. L.
,
Gomez
M. A.
,
Woo
Y. K.
, and
Akeson
W. H.
,
1982
, “
Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling
,”
Biorheology
, Vol.
19
, pp.
397
408
.
31.
Woo
S. L.
,
Peterson
R. H.
,
Ohland
K. J.
,
Sites
T. J.
, and
Danto
M. I.
,
1990
, “
The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study
,”
J. Orthop. Res.
, Vol.
8
(
5
), pp.
712
21
.
This content is only available via PDF.
You do not currently have access to this content.