To describe the time-dependent nonlinear tensile behavior observed in experimental studies of cortical bone, a damage model was developed using two internal state variables (ISV’s). One ISV is a damage parameter that represents the loss of stiffness. A rule for the evolution of this ISV was defined based on previously observed creep behavior. The second ISV represents the inelastic strain due to viscosity and internal friction. The model was tested by simulating experiments in tensile and bending loading. Using average values from previous creep studies for parameters in the damage evolution rule, the model tended to underestimate the maximum nonlinear strains and to overestimate the nonlinear strain accumulated after load reversal in the tensile test simulations. Varying the parameters for the individual tests produced excellent fits to the experimental data. Similarly, the model simulations of the bending tests could produce excellent fits to the experimental data. The results demonstrate that the 2-ISV model combining damage (stiffness loss) with slip and viscous behavior could capture the nonlinear tensile behavior of cortical bone in axial and bending loading.

1.
Boyle, J. T., and Spense, J., 1983, Stress Analysis for Creep, Butterworths, London.
2.
Burstein
A. H.
,
Zika
J. M.
,
Heiple
K. G.
, and
Klein
L.
,
1975
, “
Contribution of collagen and mineral to the elastic-plastic properties of bone
,”
J. Bone Jt. Surg.
, Vol.
75A
, pp.
956
961
.
3.
Caler
W. E.
, and
Carter
D. R.
,
1989
, “
Bone creep-fatigue damage accumulation
,”
J. Biomech.
, Vol.
22
, pp.
625
635
.
4.
Carter
D. R.
, and
Hayes
W. C.
,
1977
, “
Compact bone fatigue damage—I. Residual strength and stiffness
,”
J. Biomech.
, Vol.
9
, pp.
27
34
.
5.
Carter
D. R.
, and
Caler
W. E.
,
1983
, “
Cycle-dependent and time-dependent bone fracture with repeated loading
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
105
, pp.
166
170
.
6.
Carter
D. R.
, and
Caler
W. E.
,
1985
, “
A cumulative damage model for bone fracture
,”
J. Orthop. Res.
, Vol.
3
, pp.
84
90
.
7.
Coleman
B. D.
, and
Gurtin
M. E.
,
1967
, “
Thermodynamics with internal state variables
,”
J. Chem. Physics
, Vol.
47
, pp.
597
613
.
8.
Coleman
B. D.
, and
Noll
W.
,
1963
, “
The thermodynamics of elastic materials with heat conduction and viscosity
,”
Arch. Rational Mech. Anal.
, Vol.
13
, pp.
167
178
.
9.
Currey
J. D.
,
1990
, “
Physical characteristics affecting the tensile failure properties of compact bone
,”
J. Biomech.
, Vol.
23
, pp.
837
844
.
10.
Eringen, A. C., 1967, Mechanics of Continua, Wiley, New York.
11.
Fanella
D.
, and
Krajcinovic
D.
,
1985
, “
Continuum damage mechanics of fiber reinforced concrete
,”
J. Engng. Mech.
, Vol.
111
, pp.
995
1009
.
12.
Fondrk, M. T., 1989, “An experimental and analytical investigation into nonlinear constitutive equation of cortical bone,” Ph.D. dissertation, Department of Mechanical and Aerospace Engineering, Case Western Reserve University.
13.
Fondrk
M.
,
Bahniuk
E.
,
Davy
D. T.
, and
Michaels
C.
,
1988
, “
Some viscoplastic characteristics of bovine and human cortical bone
,”
J. Biomech.
, Vol.
21
, pp.
623
630
.
14.
Fondrk, M. T., Bahniuk, E., and Davy, D. T., 1999, “Nonlinear strains during rapid transient loading of cortical bone represent damage accumulation,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, submitted.
15.
Hight
T. K.
, and
Brandeau
J. F.
,
1983
, “
Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation
,”
J. Biomech.
, Vol.
16
, pp.
445
450
.
16.
Kachanov, L. M., 1986, Introduction to Continuum Damage Mechanics, Martinus Nijhoff, Dordrecht, The Netherlands.
17.
Krajcinovic
D.
,
1984
, “
Continuum damage mechanics
,”
Appl. Mech. Review
, Vol.
37
, pp.
1
6
.
18.
Krajcinovic
D.
,
Trafimow
J.
, and
Sumarac
D.
,
1987
, “
Simple constitutive model for a cortical bone
,”
J. Biomech.
, Vol.
20
, pp.
779
784
.
19.
Krajcinovic, D., 1996, Damage Mechanics, North-Holland Elsevier, New York.
20.
Kraus, H., 1980, Creep Analysis, Wiley, New York.
21.
Lemaitre, J., 1992, A Course in Damage Mechanics, Springer-Verlag, Berlin-Heidelberg-New York.
22.
Melnis
A. E.
, and
Knets
I. V.
,
1982
, “
Effects of the rate of deformation on the mechanical properties of compact bone tissue
,”
Mech. of Composite Materials
, Vol.
18
, pp.
358
363
.
23.
Pattin
C. A.
,
Caler
W. E.
, and
Carter
D. R.
,
1996
, “
Cyclic mechanical property degradation during fatigue loading of cortical bone
,”
J. Biomech.
, Vol.
29
, pp.
69
79
.
24.
Reilly
D. T.
, and
Burstein
A. H.
,
1975
, “
The elastic and ultimate properties of compact bone tissue
,”
J. Biomech.
, Vol.
8
, pp.
393
405
.
25.
Rimnac
C. M.
,
Petko
A. A.
,
Santner
T. J.
, and
Wright
T. M.
,
1993
, “
The effect of temperature, stress and structure on the creep of compact bovine bone
,”
J. Biomech.
, Vol.
26
, pp.
219
228
.
26.
Sedlin, E. D., 1965, “A rheologic model for cortical bone,” Acta Orthop. Scand. Suppl., Vol. 83, Copenhagen.
27.
Zioupos
P.
,
Wang
X. T.
, and
Currey
J. D.
,
1996
, “
Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler
,”
J. Biomech.
, Vol.
29
, pp.
989
1002
.
28.
Zyssett
P. K.
, and
Curnier
A.
,
1996
, “
A 3D damage model for trabecular bone based on fabric tensors
,”
J. Biomech.
, Vol.
29
, pp.
1549
1558
.
This content is only available via PDF.
You do not currently have access to this content.