Dynamic contrast-enhanced magnetic resonance imaging (DE-MRI) of the tumor blood pool is used to study tumor tissue perfusion. The results are then analyzed using percolation models. Percolation cluster geometry is depicted using the wash-in component of MRI contrast signal intensity. Fractal characteristics are determined for each two-dimensional cluster. The invasion percolation model is used to describe the evolution of the tumor perfusion front. Although tumor perfusion can be depicted rigorously only in three dimensions, two-dimensional cases are used to validate the methodology. It is concluded that the blood perfusion in a two-dimensional tumor vessel network has a fractal structure and that the evolution of the perfusion front can be characterized using invasion percolation. For all the cases studied, the front starts to grow from the periphery of the tumor (where the feeding vessel was assumed to lie) and continues to grow toward the center of the tumor, accounting for the well-documented perfused periphery and necrotic core of the tumor tissue.

1.
Baish
J. W.
,
Gazit
Y.
,
Berk
D. A.
,
Nozue
M.
,
Baxter
L. T.
, and
Jain
R. K.
,
1996
, “
Role of Tumor Vasculature Architecture in Nutrient and Drug Delivery: An Invasion Percolation-Based Network Model
,”
Microvascular Research
, Vol.
51
, pp.
327
346
.
2.
Belfi
C. A.
,
Ting
L. L.
,
Hassenbusch
S. J.
,
Tefft
M.
, and
Ngo
F. Q.
,
1992
, “
Determination of Changes in Tumor Blood Perfusion After Hydralazine Treatment by Dynamic Paramagnetic-Enhanced Magnetic Resonance Imaging
,”
Int. J. Rad. Onc., Biol. Phys.
, Vol.
22
, No.
3
, pp.
477
482
.
3.
Belfi
C. A.
,
Paul
C. R.
,
Shan
S.
, and
Ngo
F. Q.
,
1994
, “
Comparison of the Effects of Hydralazine on Tumor and Normal Tissue Blood Perfusion by MRI
,”
Int. J. Rad. Onc., Biol., Phys.
, Vol.
29
, No.
3
, pp.
473
479
.
4.
Binder, K., and Heerman, D. W., 1992, Monte Carlo Simulations in Statistical Physics, Springer-Verlag.
5.
Bunde, A., and Havlin, S., 1991, “Percolation I and II,” in: Fractals and Disordered Systems, Bunde and Havlin, eds., Springer-Verlag, pp. 51–150.
6.
Bunde, A., and Havlin, S., 1994, “A Brief Introduction to Fractal Geometry,” in: Fractals in Science, Bunde and Havlin, eds., Springer-Verlag, pp. 1–25.
7.
Craciunescu, O., 1998, “Influence of Blood Vessel Networks on Hyperthermia Induced Temperature Distributions,” Ph.D. Thesis, Duke University, pp. 9–11.
8.
Daxter
A.
, and
Ettl
A.
,
1995
, “
Corneal Vascularization and Its Relation to the Physical Properties of the Tissue: A Fractal Analysis
,”
Current Eye Research
, Vol.
14
, No.
4
, pp.
263
268
.
9.
Daxter
A.
,
1993
, “
The Fractal Geometry of Proliferative Diabetic Retinopathy: Implications for the Diagnosis and the Process of Retinal Vasculogenesis
,”
Current Eye Research
, Vol.
12
, No.
12
, pp.
1103
1109
.
10.
Dewhirst, M. W., 1993, “Angiogenesis and Blood Flow in Solid Tumors,” in: Drug Resistance in Oncology, B. Teicher, ed., Marcel Dekker, Inc., New York, pp. 3–24.
11.
Dewhirst
M. W.
,
Prosnitz
L.
,
Thrall
D.
,
Prescott
D. M.
,
Clegg
S. T.
,
Charles
H. C.
,
MacFall
J. R.
,
Rosner
G.
,
Samulski
T. V.
,
Gillette
E.
, and
LaRue
S.
,
1997
, “
Hyperthermic Treatment of Malignant Diseases: Current Status and a View Toward the Future
,”
Seminars in Oncology
, Vol.
24
, No.
6
, pp.
616
625
.
12.
Feder, J., 1988, Fractals, Plenum Press, New York.
13.
Furunberg
L.
,
Feder
J.
,
Aharony
A.
, and
Jo̸ssang
T.
,
1988
, “
Dynamics of Invasion Percolation
,”
Physical Review Letters
, Vol.
61
, No.
18
, pp.
2117
2120
.
14.
Gazit
Y.
,
Berk
D. A.
,
Leuning
M.
,
Baxter
L. T.
, and
Jain
R. K.
,
1995
, “
Scale-Invariant Behavior and Vascular Network Formation in Normal and Tumor Tissue
,”
Physical Review Letters
, Vol.
75
, No.
12
, pp.
2428
2431
.
15.
Gazit
Y.
,
Baish
J.
,
Safabakhsh
N.
,
Leunig
M.
,
Baxter
L. T.
, and
Jain
R. K.
,
1997
, “
Fractal Characteristics of Tumor Vascular Architecture During Tumor Growth and Regression
,”
Microcirculation
, Vol.
4
, No.
4
, pp.
395
402
.
16.
Gebele
T.
,
1984
, “
Site Percolation Threshold for a Square Lattice
,”
J. Phys. A: Math. Gen.
, Vol.
17
, pp.
51
54
.
17.
Herrmann
H. J.
,
Hong
D. C.
, and
Stanley
H. E.
,
1984
, “
Backbone and Elastic Backbone of Percolation Clusters Obtained by the New Method of ‘Burning’
,”
J. Phys. A: Math. Gen.
, Vol.
17
, pp.
261
266
.
18.
Herrmann
H. J.
, and
Stanley
H. E.
,
1988
, “
The Fractal Dimension of the Minimum Path in Two- and Three-Dimensional Percolation
,”
J. Phys. A: Math. Gen.
, Vol.
21
,
L829–L833
L829–L833
.
19.
Hoshen, J., and Kopelman, R., 1976, “Percolation and Cluster Distribution. I. Cluster Multiple Labeling Technique and Critical Concentration Algorithm,” Physical Review B, Vol. 14, No. 8.
20.
Hudetz
A. G.
,
1993
, “
Percolation Phenomenon: The Effect of Capillary Network Rarefaction
,”
Microvascular Research
, Vol.
45
, pp.
1
10
.
21.
Hudetz
A. G.
, and
Werin
S.
,
1986
, “
Percolation and Transit in Microvascular Networks
,”
Adv. Exp. Med. Biol.
, Vol.
200
, pp.
74
88
.
22.
Kapitulnik
A.
,
Aharony
A.
,
Deutscher
G.
, and
Stauffer
D.
,
1983
, “
Self Similarity and Correlation in Percolation
,”
J. Phys. A: Math. Gen.
, Vol.
16
, pp.
L269–L274
L269–L274
.
23.
Kiani
M. F.
, and
Hudetz
A. G.
,
1991
, “
Computer Simulation of Growth of Anastomosing Microvascular Networks
,”
J. Theor. Biol.
, Vol.
150
, pp.
547
560
.
24.
Kurland, R. J., Shoop, J. D., and Funkhouser, G. R., 1989, “A Kinetic Model for Time Development of Gd-DTPA in Relaxation Enhancement (Abstr.),” Magn. Reson. Imag. (Suppl.): Vol. 177.
25.
Lidar (Hamburger)
D. A.
,
Biham
O.
, and
Avnir
D.
,
1997
, “
Limited Range Fractality of Randomly Absorbed Rods
,”
J. Chem. Phys.
, Vol.
106
, p.
10359
10359
.
26.
Malcai
O.
,
Lidar
D. A.
,
Biham
O.
, and
Avnir
D.
,
1997
, “
Scaling Range and Cutoffs in Empirical Fractals
,”
Phys. Rev. E
, Vol.
56930
, pp.
2817
2828
.
27.
Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, Freeman, New York.
28.
Mastorakos
J.
, and
Argyrakis
P.
,
1993
, “
Transport on the Percolation Backbone
,”
Phys. Rev. E
, Vol.
48
, No.
6
, pp.
4847
4850
.
29.
McCarthy
J. F.
,
1987
, “
Invasion Percolation on a Random Lattice
,”
J. Phys. A: Math. Gen.
, Vol.
20
, pp.
3465
3469
.
30.
Pennes
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in Resting Human Forearm
,”
J. Appl. Physiology
, Vol.
1
, pp.
93
122
.
31.
Rinck, P. A., ed., 1993, “Contrast Agents,” in: Magnetic Resonance in Medicine: The Basic Textbook of the European Magnetic Resonance Forum, 3rd ed., Blackwell Scientific Publications, pp. 155–174.
32.
Samulski, T. V., and Fessenden, P., 1990, “Thermometry in Therapeutic Hyperthermia,” in: Methods of Hyperthermia Control, Gautherie, M., ed., Springer-Verlag, pp. 1–34.
33.
Stanley, E. H., 1991, “Fractals and Multifractals: The Interplay of Physics and Geometry,” in: Fractals and Disordered Systems, A. Bunde and S. Havlin, eds., Springer-Verlag, pp. 1–49.
34.
Stauffer, D., and Aharony, A., 1992, Introduction to Percolation Theory, Taylor & Francis.
35.
Tsonis
A. A.
, and
Tsonis
P. A.
,
1987
, “
Fractals: A New Look at Biological Shape and Patterning
,”
Perspectives in Biology and Medicine
, Vol.
30
, No.
3
, pp.
355
361
.
36.
Vico
P. G.
,
Boyer
H.
,
Cartilier
L. H.
,
1992
, “
New Concepts in the Study of Tissue Vascularization: A Mathematical Model of Skin Vascularization
,”
Plastic and Reconstructive Surgery
, Vol.
94
, No.
1
, pp.
174
179
.
37.
Vicseck, T., 1989, Fractal Growth Phenomena, World Scientific.
38.
Warren, B. A., 1979, “The Vascular Morphology of Tumors,” in: Tumor Blood Circulation: Angiogenesis, Vascular Morphology, Blood Flow of Experimental and Human Tumors, H. I. Petereson, ed., CRC Press.
39.
Wilkinson
D.
, and
Willemsen
J. F.
,
1983
, “
Invasion Percolation: A New Form of Percolation Theory
,”
J. Phys. A: Math. Gen.
, Vol.
16
, pp.
3365
3376
.
40.
Wilkinson
D.
, and
Barsony
M.
,
1984
, “
Monte Carlo Study of Invasion Percolation Clusters in Two and Three Dimensions
,”
J. Phys. A: Math. Gen.
, Vol.
17
, pp.
L129–L135
L129–L135
.
This content is only available via PDF.
You do not currently have access to this content.