In a long-term effort to develop a complete multi-axial failure criterion for human trabecular bone, the overall goal of this study was to compare the ability of a simple cellular solid mechanistic criterion versus the Tsai–Wu, Principal Strain, and von Mises phenomenological criteria—all normalized to minimize effects of interspecimen heterogeneity of strength—to predict the on-axis axial-shear failure properties of bovine trabecular bone. The Cellular Solid criterion that was developed here assumed that vertical trabeculae failed due to a linear superposition of axial compression/tension and bending stresses, induced by the apparent level axial and shear loading, respectively. Twenty-seven bovine tibial trabecular bone specimens were destructively tested on-axis without end artifacts, loaded either in combined tension-torsion (n = 10), compression-torsion (n = 11), or uniaxially (n = 6). For compression-shear, the mean (± S.D.) percentage errors between measured values and criterion predictions were 7.7 ± 12.6 percent, 19.7 ± 23.2 percent, 22.8 ± 18.9 percent, and 82.4 ± 64.5 percent for the Cellular Solid, Tsai–Wu, Principal Strain, and von Mises criteria, respectively; corresponding mean errors for tension-shear were –5.2 ± 11.8 percent, 14.3 ± 12.5 percent, 6.9 ± 7.6 percent, and 57.7 ± 46.3 percent. Statistical analysis indicated that the Cellular Solid criterion was the best performer for compression-shear, and performed as well as the Principal Strain criterion for tension-shear. These data should substantially improve the ability to predict axial-shear failure of dense trabecular bone. More importantly, the results firmly establish the importance of cellular solid analysis for understanding and predicting the multiaxial failure behavior of trabecular bone.

1.
Bagi
C. M.
,
Wilkie
D.
,
Georgelos
K.
,
Williams
D.
, and
Bertolini
D.
,
1997
, “
Morphological and structural characteristics of the proximal femur in human and rat
,”
Bone
,
21
,
261
267
.
2.
Brown
T. D.
,
Mutschler
T. A.
, and
Ferguson
A. B.
,
1982
, “
A non-linear finite element analysis of some early collapse processes in femoral head osteonecrosis
,”
J. Biomech.
,
15
,
705
715
.
3.
Brown
T. D.
,
Pedersen
D. R.
,
Radin
E. L.
, and
Rose
R. M.
,
1988
, “
Global mechanical consequences of reduced cement/bone coupling rigidity in proximal femoral arthroplasty: a three-dimensional finite element analysis
,”
J. Biomech.
,
21
,
115
129
.
4.
Chang, W., Christensen, T. M., Pinilla, T. P., and Keaveny, T. M., 1999, “Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric,” J. Orthop. Res., in press.
5.
Cheal
E. J.
,
Hayes
W. C.
,
Lee
C. H.
,
Snyder
B. D.
, and
Miller
J.
,
1985
, “
Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depth
,”
J. Orthop. Res.
,
3
,
424
434
.
6.
Cheal
E. J.
,
Hipp
J. A.
, and
Hayes
W. C.
,
1993
, “
Evaluation of finite element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck
,”
J. Biomech.
,
26
,
251
264
.
7.
Cheal
E. J.
,
Spector
M.
, and
Hayes
W. C.
,
1992
, “
Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty
,”
J. Orthop. Res.
,
10
,
405
422
.
8.
Cowin
S. C.
,
1986
, “
Fabric dependence of an anisotropic strength criterion
,”
Mech. Mater.
,
5
,
251
260
.
9.
Ford
C. M.
, and
Keaveny
T. M.
,
1996
, “
The dependence of shear failure properties of bovine tibial trabecular bone on apparent density and trabecular orientation
,”
J. Biomech.
,
29
,
1309
1317
.
10.
Ford
C. M.
,
Keaveny
T. M.
, and
Hayes
W. C.
,
1996
, “
The effect of impact direction on the structural capacity of the proximal femur during falls
,”
J. Bone Min. Res.
,
11
,
377
383
.
11.
Galante
J.
,
Rostoker
W.
, and
Ray
R. D.
,
1970
, “
Physical properties of trabecular bone
,”
Calcif. Tissue Res.
,
5
,
236
246
.
12.
Gibson
L. J.
,
1985
, “
The mechanical behavior of cancellous bone
,”
J. Biomech.
,
18
,
317
328
.
13.
Gibson
L. J.
,
Ashby
M. F.
,
Zhang
J.
, and
Triantafillou
T. C.
,
1989
, “
Failure surfaces for cellular materials under multiaxial loads—I. Modelling
,”
Int. J. Mech. Sci.
,
31
,
635
663
.
14.
Gibson, L. J., and Ashby, M. F., 1997, Cellular Solids: Structures & Properties, Pergamon Press. Oxford.
15.
Keaveny
T. M.
, and
Bartel
D. L.
,
1993
, “
Effects of porous coating and collar support on early load transfer for a cementless hip prosthesis
,”
J. Biomech.
,
26
,
1205
1216
.
16.
Keaveny
T. M.
, and
Bartel
D. L.
,
1994
, “
Fundamental load transfer patterns for press-fit, surface-treated intramedullary fixation systems
,”
J. Biomech.
,
27
,
1147
1157
.
17.
Keaveny
T. M.
,
Guo
X. E.
,
Wachtel
E. F.
,
McMahon
T. A.
, and
Hayes
W. C.
,
1994
a, “
Trabecular bone exhibits fully linear elastic behavior and yields at low strains
,”
J. Biomech.
,
27
,
1127
1136
.
18.
Keaveny
T. M.
,
Wachtel
E. F.
,
Ford
C. M.
, and
Hayes
W. C.
,
1994
b, “
Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus
,”
J. Biomech.
,
27
,
1137
1146
.
19.
Keaveny
T. M.
, and
Bartel
D. L.
,
1995
, “
Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement
,”
J. Bone Joint. Surg. [Am.]
,
77-A
,
911
923
.
20.
Keaveny
T. M.
,
1997
, “
Mechanistic approaches to analysis of trabecular bone
,”
Forma
,
12
,
267
275
.
21.
Keaveny
T. M.
,
Pinilla
T. P.
,
Crawford
R. P.
,
Kopperdahl
D. L.
, and
Lou
A.
,
1997
, “
Systematic and random errors in compression testing of trabecular bone
,”
J. Orthop Res.
,
15
,
101
110
.
22.
Keaveny
T. M.
,
Wachtel
E. F.
,
Zadesky
S. P.
, and
Arramon
Y. P.
,
1999
, “
Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
121
, pp.
99
107
.
23.
Keyak
J. H.
,
Rossi
S. A.
,
Jones
K. A.
, and
Skinner
H. B.
,
1998
, “
Prediction of femoral fracture load using automated finite element modeling
,”
J. Biomech.
,
31
,
125
133
.
24.
Kopperdahl
D. L.
, and
Keaveny
T. M.
,
1998
, “
Yield strain behavior of trabecular bone
,”
J. Biomech.
,
31
,
601
608
.
25.
Lotz
J. C.
,
Gerhart
T. N.
, and
Hayes
W. C.
,
1990
, “
Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study
,”
J. Comput. Assist. Tomogr.
,
14
,
107
114
.
26.
Lotz
J. C.
,
Cheal
E. J.
, and
Hayes
W. C.
,
1991
a, “
Fracture prediction for the proximal femur using finite element models: Part I—Linear analysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
113
,
353
360
.
27.
Lotz
J. C.
,
Cheal
E. J.
, and
Hayes
W. C.
,
1991
b, “
Fracture prediction for the proximal femur using finite element models: Part II—Nonlinear analysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
113
,
361
365
.
28.
Lotz
J. C.
,
Cheal
E. J.
, and
Hayes
W. C.
,
1995
, “
Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture
,”
Osteoporosis Int.
,
5
,
252
261
.
29.
Patel, M. R., 1969, “The deformation and fracture of rigid cellular plastics under multiaxial stress,” Ph.D. dissertation. University of California, Berkeley, CA.
30.
Rajan
K.
,
1985
, “
Linear elastic properties of trabecular bone: A cellular solid approach
,”
J. Mat. Sci. Letters
,
4
,
609
611
.
31.
Reilly
D. T.
, and
Burstein
A. H.
,
1975
, “
The elastic and ultimate properties of compact bone tissue
,”
J. Biomech.
,
8
,
393
405
.
32.
Rice
J. C.
,
Cowin
S. C.
, and
Bowman
J. A.
,
1988
, “
On the dependence of the elasticity and strength of cancellous bone on apparent density
,”
J. Biomech.
,
21
,
155
168
.
33.
Rohlmann
A.
,
Zilch
H.
,
Bergmann
G.
, and
Kolbel
R.
,
1980
, “
Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties
,”
Arch. Orthop. Trauma Surg.
,
97
,
95
102
.
34.
Rowlands, R. E., 1985, “Strength (failure) theories and their experimental correlations,” in: Handbook of Composites, Vol. 3, 71–125, G. C. Sih and A. M. Skudra, eds., Elsevier Science, Amsterdam.
35.
Rubin
P. J.
,
Rakotomanana
R. L.
,
Leyvraz
P. F.
,
Zysset
P. K.
,
Curnier
A.
, and
Heegaard
J. H.
,
1993
, “
Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component
,”
J. Biomech.
,
26
,
725
739
.
36.
Silva
M. J.
,
Keaveny
T. M.
, and
Hayes
W. C.
,
1998
, “
Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections
,”
J. Orthop. Res.
,
16
,
300
308
.
37.
Snyder, B., and Hayes, W., 1990, “Multiaxial structure-property relations in trabecular bone,” in: Biomechanics of Diarthrodial Joints, 31–59, V. C. Mow, A. Ratcliffe, and S.-Y. Woo, eds., Springer-Verlag, New York.
38.
Snyder
B. D.
,
Piazza
S.
,
Edwards
W. T.
, and
Hayes
W. C.
,
1993
, “
Role of trabecular morphology in the etiology of age-related vertebral fractures
,”
Calcif. Tiss. Int.
,
53S
,
S14–S22
S14–S22
.
39.
Stone
J. L.
,
Beaupre´
G. S.
, and
Hayes
W. C.
,
1983
, “
Multiaxial strength characteristics of trabecular bone
,”
J. Biomech.
,
16
,
743
752
.
40.
Suwito
W.
,
Keller
T. S.
,
Basu
P. K.
,
Weisberger
A. M.
,
Strauss
A. M.
, and
Spengler
D. M.
,
1992
, “
Geometric and material property study of the human lumbar spine using the finite element method
,”
J. Spinal Disord.
,
5
,
50
59
.
41.
Triantafillou
T. C.
,
Zhang
J.
,
Shercliff
T. L.
,
Gibson
L. J.
, and
Ashby
M. F.
,
1989
, “
Failure surfaces for cellular materials under multiaxial loads—II. Comparison of models with experiment
,”
Int. J. Mech. Sci.
,
31
,
665
678
.
42.
Triantafillou
T. C.
, and
Gibson
L. J.
,
1990
, “
Multiaxial failure criteria for brittle foams
,”
Int. J. Mech. Sci.
,
32
,
479
496
.
43.
Tsai
S.
, and
Wu
E.
,
1971
, “
A general theory for strength of anisotropic materials
,”
J. Comp. Mater.
,
5
,
58
80
.
44.
Turner
C. H.
,
1989
, “
Yield behavior of bovine cancellous bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
111
,
256
260
.
45.
Vasu
R.
,
Carter
D. R.
, and
Harris
W. H.
,
1981
, “
Stress distributions in the acetabular region. I. Before and after total joint replacement
,”
J. Biomech.
,
15
,
155
164
.
46.
Zaslawsky
M.
,
1973
, “
Multiaxial-stress studies on rigid polyurethane foam
,”
Exper. Mech.
,
2
,
70
76
.
This content is only available via PDF.
You do not currently have access to this content.