Blood flow dynamics in the human right coronary artery have not been adequately quantified despite the clinical significance of coronary atherosclerosis. In this study, a technique was developed to construct a rigid flow model from a cast of a human right coronary artery. A laser photochromic method was used to characterize the velocity and wall shear stress patterns. The flow conditions include steady flow at Reynolds numbers of 500 and 1000 as well as unsteady flow with Womersley parameter and peak Reynolds number of 1.82 and 750, respectively. Characterization of the three-dimensional geometry of the artery revealed that the largest spatial variation in curvature occurred within the almost branch-free proximal region, with the greatest curvature existing along the acute margin of the heart. In the proximal segment, high shear stresses were observed on the outer wall and lower, but not negative, stresses along the inner wall. Low shear stress on the inner wall may be related to the preferential localization of atherosclerosis in the proximal segment of the right coronary artery. However, it is possible that the large difference between the outer and inner wall shear stresses may also be involved.

1.
Asakura
T.
, and
Karino
T.
,
1990
, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circulation Research
, Vol.
66
, pp.
1045
1066
.
2.
Davies
M. J.
,
1995
, “
Flow-mediated endothelial mechanotransduction
,”
Physiologic Reviews
, Vol.
75
, pp.
519
560
.
3.
Debakey
M. E.
,
Lawrie
G. M.
, and
Glaeser
D. H.
,
1985
, “
Patterns of atherosclerosis and their surgical significance
,”
Annals of Surgery
, Vol.
201
, pp.
115
131
.
4.
Deng
X.
,
Marois
Y.
,
King
M. W.
, and
Guidoin
R.
,
1994
, “
Uptake of 3H-7-cholesterol along the arterial wall at an area of stenosis
,”
ASAIO Journal
, Vol.
40
, pp.
186
191
.
5.
Ding
Z.
,
Biggs
T.
,
Seed
A.
, and
Friedman
M. H.
,
1997
, “
Influence of the geometry of the left main coronary artery bifurcation on the distribution of sudanophilia in the daughter vessels
,”
Arteriosclerosis, Thrombosis, and Vascular Biology
, Vol.
17
, pp.
1356
1360
.
6.
Fox
B.
,
James
K.
,
Morgan
B.
, and
Seed
A.
,
1982
, “
Distribution of fibrous plaques in young human coronary arteries
,”
Atherosclerosis
, Vol.
41
, pp.
337
347
.
7.
Friedman
M. H.
,
Deters
O. J.
,
Bargeron
C. B.
,
Hutchins
G. M.
, and
Mark
F. F.
,
1986
, “
Shear-dependent thickening of the human arterial intima
,”
Atherosclerosis
, Vol.
60
, pp.
161
171
.
8.
Friedman
M. H.
,
Bargeron
C. B.
,
Deters
O. J.
,
Hutchins
G. M.
, and
Mark
F. F.
,
1987
, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
, Vol.
68
, pp.
27
33
.
9.
Friedman
M. H.
,
1993
, “
Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
595
601
.
10.
Gibson
C. M.
,
Diaz
L.
,
Kandarpa
K.
,
Sacks
F. M.
,
Pasternak
R. C.
,
Sandor
T.
,
Feldman
C.
, and
Stone
P. H.
,
1993
, “
Relation of Vessel Wall Shear Stress to Atherosclerosis Progression in Human Coronary Arteries
,”
Arteriosclerosis and Thrombosis
, Vol.
13
, pp.
310
315
.
11.
He
X.
, and
Ku
D. N.
,
1996
, “
Pulsatile flow in the left coronary artery bifurcation: average conditions
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
118
, pp.
74
82
.
12.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis
, Vol.
5
, pp.
293
302
.
13.
Lou
Z.
,
Yang
W.-J.
, and
Stein
P. D.
,
1993
, “
Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles
,”
Journal of Biomechanics
, Vol.
26
, pp.
383
390
.
14.
Marcus
M.
,
Wright
C.
,
Doty
D.
,
Eastham
C.
,
Laughlin
D.
,
Krumm
P.
,
Fastenow
C.
, and
Brody
M.
,
1981
, “
Measurements of Coronary Velocity and Reactive Hyperemia in the Coronary Circulation of Humans
,”
Circulation Research
, Vol.
49
, pp.
877
891
.
15.
Montenegro
M. R.
, and
Eggen
D. A.
,
1968
, “
Topography of atherosclerosis in the coronary arteries
,”
Laboratory Investigations
, Vol.
18
, pp.
586
593
.
16.
Nerem, R. M., and Levesque, M. J., 1983, “The Case for Fluid Dynamics as a Localizing Factor in Atherogenesis,” Fluid Dynamics as a Localizing Factor for Atherosclerosis, G. Schettler et al., eds., Springer-Verlag, Heidelberg, Germany.
17.
Ofili
E. O.
,
Labovitz
A. J.
, and
Kern
M. J.
,
1993
, “
Coronary Flow Velocity Dynamics in Normal and Diseased Arteries
,”
American Journal of Cardiology
, Vol.
71
, pp.
3D–9D
3D–9D
.
18.
Ojha
M.
,
Cobbold
R. S. C.
,
Hummel
R. L.
, and
Johnston
K. W.
,
1989
, “
Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods
,”
Journal of Fluid Mechanics
, Vol.
203
, pp.
173
197
.
19.
Ojha
M.
,
Ethier
C. R.
,
Johnston
K. W.
, and
Cobbold
R. S. C.
,
1990
, “
Steady and pulsatile flow fields in an end-to-side arterial anastomosis model
,”
Journal of Vascular Surgery
, Vol.
12
, pp.
747
753
.
20.
Ojha
M.
,
1993
, “
Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model
,”
Journal of Biomechanics
, Vol.
26
, pp.
1377
1388
.
21.
Ojha
M.
,
1994
, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circulation Research
, Vol.
74
, pp.
1227
1231
.
22.
Olson
D. E.
, and
Snyder
B.
,
1985
, “
The upscale of flow development in curved circular pipes
,”
Journal of Fluid Mechanics
, Vol.
150
, pp.
139
158
.
23.
Perktold
K.
, and
Rappitsch
G.
,
1995
, “
Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
,”
Journal of Biomechanics
, Vol.
28
, pp.
845
856
.
24.
Sabbah
H. N.
,
Walburn
F. J.
, and
Stein
P. D.
,
1984
, “
Patterns of Flow in the Left Coronary Artery
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
272
279
.
25.
Santamarina
A.
,
Siegel
J. M.
, and
Moore
J. E.
,
1996
, “
Effects of time-varying curvature due to myocardial contraction on flow in the coronary arteries
,”
1996 Advances in Bioengineering
, ASME BED-Vol.
33
, pp.
335
336
.
26.
Segal
J.
,
Kern
M. J.
,
Scott
N. A.
,
King
S. B.
,
Doucette
J. W.
,
Heuser
R. R.
,
Ofili
E.
, and
Siegel
R.
,
1992
, “
Alterations of Phasic Coronary Artery Flow Velocity in Humans During Percutaneous Coronary Angioplasty
,”
Journal of the American College of Cardiology
, Vol.
20
, pp.
276
286
.
27.
Stary
H. C.
,
1989
, “
Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults
,”
Arteriosclerosis
, Vol.
9
[
Suppl. I
], pp.
119
132
.
28.
Stary
H. C.
,
Blankenhorn
D. H.
,
Chandler
A. B.
,
Glagov
S.
,
Insull
W.
,
Richardson
M.
,
Rosenfeld
M. E.
,
Schaffer
S. A.
,
Schwartz
C. J.
,
Wagner
W. D.
, and
Wissler
R. W.
,
1992
, “
A Definition of the Intima of Human Arteries and of Its Atherosclerosis-Prone Regions: A Report From the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association
,”
Circulation
, Vol.
85
, pp.
391
405
.
29.
Womersley
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known
,”
Journal of Physiology
, Vol.
127
, pp.
553
563
.
30.
Yamamoto
T.
,
Ogasawara
Y.
,
Kimura
A.
,
Tanaka
H.
,
Hiramatsu
O.
,
Tsujioka
K.
,
Lever
M. J.
,
Parker
K. H.
,
Jones
C. J. H.
,
Caro
C. G.
, and
Kajiya
F.
,
1996
, “
Blood Velocity Profiles in the Human Renal Artery by Doppler Ultrasound and Their Relationship to Atherosclerosis
,”
Arteriosclerosis Thrombosis and Vascular Biology
, Vol.
16
, pp.
172
177
.
31.
Yutani, C., Imakita, M., Ishibashi-Ueda, H., Yamamoto, A., and Takaichi, S., 1988, “Localization of lipids and cell population in atheromatous lesions in aorta and its main arterial branches in patients with hypercholesterolemia,” Role of Blood Flow in Atherogenesis, Y. Yoshida et al., eds., Springer-Verlag, Tokyo.
This content is only available via PDF.
You do not currently have access to this content.