1.
Anayiotos
A.
,
Perry
G.
,
Meyers
J.
,
Green
D.
,
Fan
P.
, and
Nanda
N.
,
1995
, “
A numerical and experimental investigation of the flow acceleration proximal to an orifice
,”
Ultrasound in Med. & Biol.
,
21
:
501
516
.
2.
Barclay
S.
,
Eidenvall
L.
,
Karlsson
M.
,
Andersson
G.
,
Xiong
C.
,
Ask
P.
,
Loyd
D.
, and
Wranne
B.
,
1993
, “
The shape of the proximal isovelocity surface area varies with regurgitant orifice size and distance from orifice: Computer simulation and model experiments with color m-mode technique
,”
J. Am. Soc. Echocardiogr.
,
6
:
433
445
.
3.
Bargiggia
G.
,
Tronconi
L.
,
Sahn
D.
,
Recusani
F.
,
Raisaro
A.
,
DeServi
S.
,
Valdes-Cruz
L.
, and
Montemartini
C.
,
1991
, “
A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice
,”
Circulation
,
84
:
1481
1489
.
4.
Boyle
G.
,
Brodeur
J.
,
VanAuker
M.
,
Ettedgui
J.
, and
Cape
E.
,
1995
, “
Ambient fluid velocity influences proximal isovelocity surface area calculations
,”
Echocardiography
,
12
:
581
589
.
5.
Chen
C.
,
Vandervoort
P.
,
Heik
S.
,
Weyman
A.
, and
Thomas
J.
,
1992
, “
Is the proximal flow convergence method accurate in the presence of a second outflow?
Circulation
,
86
:
1
805
.
6.
Gardin
J.
,
1992
, “
Doppler color flow ‘proximal isovelocity surface area (PISA)’: An alternative method for estimating volume flow across narrowed orifices, regurgitant valves, and intracardiac shunt lesions
,”
Echocardiography
,
9
:
39
42
.
7.
Guenet, F., 1994, “Quantitation of valvular regurgitation by proximal isovelocity surface area and magnetic resonance imaging,” MS Thesis, Georgia Institute of Technology.
8.
Guenet
F.
,
Walker
P.
,
Doyle
M.
,
Pohost
G.
,
Yoganathan
A.
,
1997
, “
Effect of Physiological Factors on Proximal Flow Convergence Upstream of an Incompetent Valve: An In-Vitro Study
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
119
:
39
44
.
9.
Hopmeyer
J.
,
Fontaine
A.
,
Yang
S.
,
Levine
R.
, and
Yoganathan
A.
,
1996
a, “
The effect of aortic outflow on the quantification of mitral regurgitation using the flow convergence method
,”
J. Am. Soc. Echocardiogr.
,
9
:
44
57
.
10.
Hopmeyer, J., 1996b, Ph.D. Thesis, Georgia Institute of Technology.
11.
Hopmeyer
J.
,
Whitney
E.
,
Papp
D.
, et al.,
1996
c, “
Computational simulations of mitral regurgitation quantification using the flow convergence method: comparison of hemispheric and hemi-elliptic formulae
,”
Ann. Biomed. Eng.
,
24
:
561
72
.
12.
Hopmeyer
J.
,
Wilkerson
P. W.
,
Thorvig
K. M.
,
Levine
R. A.
, and
Yoganathan
A. P.
,
1998
a, “
Pulsatile Flow Computational Simulations of Mitral Regurgitation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
120
, pp.
245
254
.
13.
Hopmeyer, J., He, S., Thorvig, K. M., McNeil, E., Wilkerson, P. W., Levine, R. A., and Yoganathan, A. P., 1998b, “Estimation of Mitral Regurgitation With a Hemielliptic Curve-Fitting Algorithm: In Vitro Experiments With Native Mitral Valves,” Journal of the American Society of Echocardiography, Vol. 11.
14.
Lawden, D., 1989, Elliptic Functions and Applications, Springer-Verlag, New York.
15.
Levine
R.
,
1991
, “
Doppler color mapping of proximal flow convergence: A new quantitative physiologic tool
,”
J. Am Coll. Cardiol.
,
18
:
833
836
.
16.
Otto, C. M., 1997, The Practice of Clinical Echocardiography, Philadelphia, W. B. Saunders Co.
17.
Pu
M.
,
Vandervoort
P.
,
Rivera
J.
, and
Thomas
J.
,
1993
, “
Proximal flow constraint by ventricular wall causes overestimation of regurgitant flow in mitral regurgitation: In vitro assessment
,”
Circulation
,
88
:
1
110
.
18.
Recusani
F.
,
Bargiggia
G.
,
Yoganathan
A.
,
Raisaro
A.
,
Valdes-Cruz
L.
,
Sung
H.-W.
,
Bertucci
C.
,
Gallati
M.
,
Moises
V.
,
Simpson
I.
,
Tronconi
L.
, and
Sahn
D.
,
1991
, “
A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice: An in vitro study
,”
Circulation
,
83
:
594
604
.
19.
Rodriguez, L., Flachskampf, F., Abascal, V., Levine, R., Harrigan, P., Thomas, J., 1989, “Regurgitant flow rate calculated by proximal isovelocity surface area is independent of orifice shape,” Circulation, 80: II–573.
20.
Rodriguez
L.
,
Anconina
J.
,
Flachskampf
F.
,
Weyman
A.
,
Levine
R.
, and
Thomas
J.
,
1992
, “
Impact of finite orifice size on proximal flow convergence: Implications for Doppler quantification of valvular regurgitation
,”
Circ. Res.
,
70
:
923
930
.
21.
Shiota
T.
,
Jones
M.
,
Valdes-Cruz
L.
,
Shandas
R.
,
Yamada
I.
, and
Sahn
D.
,
1995
, “
Color flow Doppler determination of transmitral flow and orifice area in mitral stenosis: experimental evaluation of the proximal flow convergence method
,”
Am. Heart J.
,
129
:
114
23
.
22.
Utsunomiya
T.
,
Ogawa
T.
,
Tang
H.
,
Doshi
R.
,
Patel
D.
,
Quan
M.
,
Henry
W.
, and
Gardin
J.
,
1991
a, “
Doppler color flow mapping of the proximal isovelocity surface area: A new method for measuring volume flow rate across a narrowed orifice
,”
J. Am. Soc. Echocardiogr.
,
4
:
338
348
.
23.
Utsunomiya
T.
,
Ogawa
T.
,
Doshi
R.
,
Patel
D.
,
Quan
M.
,
Henry
W.
, and
Gardin
J.
,
1991
b, “
Doppler color flow ‘proximal isovelocity surface area’ method for estimating volume flow rate: Effects of orifice shape and machine factors
,”
J. Am. Coll. Cardiol.
,
17
:
1103
1111
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.