Purpose: Recently, some numerical and experimental studies of blood flow in large arteries have attempted to accurately replicate in vivo arterial geometries, while others have utilized simplified models. The objective of this study was to determine how much an anatomically realistic geometry can be simplified without the loss of significant hemodynamic information. Method: A human femoral-popliteal bypass graft was used to reconstruct an anatomically faithful finite element model of an end-to-side anastomosis. Nonideal geometric features of the model were removed in sequential steps to produce a series of successively simplified models. Blood flow patterns were numerically computed for each geometry, and the flow and wall shear stress fields were analyzed to determine the significance of each level of geometric simplification. Results: The removal of small local surface features and out-of-plane curvature did not significantly change the flow and wall shear stress distributions in the end-to-side anastomosis. Local changes in arterial caliber played a more significant role, depending upon the location and extent of the change. The graft-to-host artery diameter ratio was found to be a strong determinant of wall shear stress patterns in regions that are typically associated with disease processes. Conclusions: For the specific case of an end-to-side anastomosis, simplified models provide sufficient information for comparing hemodynamics with qualitative or averaged disease locations, provided the “primary” geometric features are well replicated. The ratio of the graft-to-host artery diameter was shown to be the most important geometric feature. “Secondary” geometric features such as local arterial caliber changes, out-of-plane curvature, and small-scale surface topology are less important determinants of the wall shear stress patterns. However, if patient-specific disease information is available for the same arterial geometry, accurate replication of both primary and secondary geometric features is likely required.

1.
Bassiouny
H. S.
,
White
S.
,
Glagov
S.
,
Choi
E.
,
Giddens
D. P.
, and
Zarins
C. K.
, “
Anastomotic intimal hyperplasia: mechanical injury or flow induced?
J. Vasc. Surg.
,
15
:
708
717
,
1992
.
2.
Binns
R. L.
,
Ku
D. N.
,
Stewart
M. T.
,
Ansley
J. P.
, and
Coyle
K. A.
, “
Optimal graft diameter: effect of wall shear stress on vascular healing
,”
J. Vasc. Surg.
,
10
(
3
):
326
337
,
1989
.
3.
Butany
J. W.
,
David
T. E.
, and
Ojha
M.
, “
Histological and morphometric analyses of early and late aortocoronary vein grafts and distal anastomoses
,”
Can. J. Cardiol.
,
14
(
5
):
671
677
,
1998
.
4.
Chandran
K. B.
,
Vonesh
M. J.
,
Roy
A.
,
Greenfield
S.
,
Kane
B.
,
Greene
R.
, and
McPherson
D. D.
, “
Computation of vascular flow dynamics from intravascular ultrasound images
,”
Med. Eng. Phys.
,
18
(
4
):
295
304
,
1996
.
5.
Duncan
D. D.
,
Bargeron
C. B.
,
Borchardt
S. E.
,
Deters
O. J.
,
Gearhart
S. A.
,
Mark
F. F.
, and
Friedman
M. H.
, “
The effect of compliance on wall shear in casts of a human aortic bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
112
:
183
188
,
1990
.
6.
C. R. Ethier, D. A. Steinman, and M. Ojha, “Comparisons between computational hemodynamics, photochromic dye flow visualization and MR velocimetry,” in: X. Y. Xu and M. W. Collins, eds., The Haemodynamics of Internal Organs—Comparison of Computational Predictions With in Vivo and in Vitro Data, Ashurst, UK, in press, Computational Mechanics Publications.
7.
Ethier
C. R.
,
Steinman
D. A.
,
Zhang
X.
,
Karpik
S. R.
, and
Ojha
M.
, “
Flow waveform effects on end-to-side anastomotic flow patterns
,”
J. Biomech.
,
31
(
7
):
609
617
,
1998
.
8.
Fei
D. Y.
,
Thomas
J. D.
, and
Rittgers
S. E.
, “
The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
116
:
331
336
,
1994
.
9.
Friedman
M. H.
,
Deters
O. J.
,
Bargeron
C. B.
,
Hutchins
G. M.
, and
Mark
F. F.
, “
Shear-dependent thickening of the human arterial intima
,”
Athero
,
60
:
161
171
,
1986
.
10.
Friedman
M. H.
,
Hutchins
G. M.
,
Bargeron
C. B.
,
Deters
O. J.
, and
Mark
F. F.
, “
Correlation of human arterial morphology with hemodynamic measurements in arterial casts
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
103
:
204
207
,
1981
.
11.
Friedman
M. H.
,
Deters
O. J.
,
Mark
F. F.
,
Bargeron
C. B.
, and
Hutchins
G. M.
, “
Arterial geometry affects hemodynamics
,”
Atherosclerosis
,
46
:
225
231
,
1989
.
12.
Friedman
M. H.
,
Kuban
B. D.
,
Schmalbrock
P.
,
Smith
K.
, and
Altan
T.
, “
Fabrication of vascular replicas from magnetic resonance images
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
117
:
364
365
,
1995
.
13.
Hughes
P. E.
and
How
T. V.
, “
Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis
,”
J. Biomech.
,
29
(
7
):
855
872
,
1996
.
14.
Jones
S. A.
,
Giddens
D. P.
,
Loth
F.
,
Zarins
C. K.
,
Kajiya
F.
,
Morita
I.
,
Hiramatsu
O.
,
Ogasawara
Y.
, and
Tsujioka
K.
, “
In-vivo measurements of blood flow velocity profiles in canine ilio-femoral anastomotic bypass grafts
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
119
:
30
38
,
1997
.
15.
Keynton
R. S.
,
Rittgers
S. E.
, and
Shu
M. C. S.
, “
The effect of angle and flow rate upon hemodynamics in distal vascular graft an astomoses: an in vitro model study
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
113
:
458
463
,
1991
.
16.
A. Kirpalani, H. Park, J. Butany, and M. Ojha, “Hemodynamic and histomorphometric measurements in the human right coronary artery,” in: K. B. Chandran, R. Vanderby, Jr., and M. S. Hefzy, eds., 1997 Bioengineering Conference, ASME BED-Vol. 35, pp. 207–208, 1997.
17.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress
,”
Arteriosclerosis
,
5
:
293
302
,
1985
.
18.
Lei
M.
,
Kleinstreuer
C.
, and
Archie
J. P.
, “
Geometric design improvements for femoral graft-artery junctions mitigating restenosis
,”
J. Biomech.
,
29
(
12
):
1605
1614
,
1996
.
19.
Liepsch
D.
,
Poll
A.
,
Strigberger
J.
,
Sabbah
H. N.
, and
Stein
P. D.
, “
Flow visualization studies in a mold of the normal human aorta and renal arteries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
115
:
222
227
,
1989
.
20.
Loth
F.
,
Jones
S. A.
,
Giddens
D. P.
,
Bassiouny
H. S.
,
Glagov
S.
, and
Zarins
C. K.
, “
Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
119
:
187
194
,
1997
.
21.
Milner
J.
,
Moore
J. A.
,
Rutt
B. K.
, and
Steinman
D. A.
, “
Hemodynamics of human carotid artery bifurcations: computational studies in models reconstructed from magnetic resonance imaging of normal subjects
,”
J. Vasc. Surg.
,
28
(
1
):
143
156
,
1998
.
22.
J. A. Moore, “Computational blood flow modelling in realistic arterial geometries,” PhD thesis, Department of Mechanical Engineering, University of Toronto, Toronto, 1998.
23.
Moore
J. A.
,
Steinman
D. A.
, and
Ethier
C. R.
, “
Computational blood flow modelling: errors associated with reconstructing finite element models from magnetic resonance images
,”
J. Biomech.
,
31
:
179
184
,
1998
.
24.
J. A. Moore, D. A. Steinman, K. W. Johnston, and C. R. Ethier, “Geometrical sensitivity in 3D arterial blood flow studies,” in: K. B. Chandran, R. Vanderby, Jr., and M. S. Hefzy, eds., 1997 Bioengineering Conference, ASME BED Vol. 35, pp. 339–340, 1997.
25.
J. A. Moore, D. A. Steinman, S. J. Karlik, D. Holdsworth, and C. R. Ethier, “Computational blood flow modelling in real arteries: in vivo MRI models vs. vascular casts,” in: K. B. Chandran, R. Vanderby, Jr., and M. S. Hefzy, eds., 1997 Bioengineering Conference, ASME BED-Vol. 35, pp. 345–346, New York, 1997.
26.
Ojha
M.
, “
Wall shear stress temporal gradient and anastomotic intimal hyperplasia
,”
Circ. Research
,
74
(
6
):
1227
1231
,
1994
.
27.
M. Ojha, personal communication, 1997.
28.
Ojha
M.
,
Cobbold
R. S. C.
, and
Johnston
K. W.
, “
Influence of angle on wall shear stress distribution for an end-to-side anastomosis
,”
J. Vasc. Surg.
,
19
(
6
):
1067
1073
,
1994
.
29.
Perktold
K.
,
Hofer
M.
,
Rappitsch
G.
,
Loew
M.
,
Kuban
B. D.
, and
Friedman
M. H.
, “
Validated computation of physiologic flow in a realistic coronary artery branch
,”
J. Biomech.
,
31
(
3
):
217
228
,
1998
.
30.
K. Perktold, M. Hofer, H. P. Zehentner, W. Trubel, and H. Schima, “Numerical study of local hemodynamics in cuffed distal end-to-side anastomoses and correlation to intimal hyperplasia,” in: K. B. Chandran, R. Vanderby, Jr., and M. S. Hefzy, eds., 1997 Bioengineering Conference, ASME BED-Vol. 35, pp. 349–350, New York, 1997.
31.
Sabbah
H. N.
,
Hawkins
E. T.
, and
Stein
P. D.
, “
Flow separation in the renal arteries
,”
Arterio
,
4
(
1
):
28
33
,
1984
.
32.
Sanders
R. J.
,
Kempczinski
R. F.
,
Hammond
W.
, and
DiClementi
D.
, “
The significance of graft diameter
,”
Surg.
,
88
(
6
):
856
865
,
1980
.
33.
Sherwin
S. J.
,
Shah
O.
,
Doorly
D. J.
,
McLean
M.
,
Watkins
N.
,
Caro
C. G.
,
Peiro
J.
,
Tarnawski
M.
, and
Dumoulin
C. L.
, “
Visualization and computational study of flow at model planar and non-planar end-to-side arterial bypass grafts
,”
J. Physiol.
,
504P
:
44P
44P
,
1997
.
34.
Sottiurai
V. S.
,
Yao
J. S. T.
,
Flinn
W. R.
, and
Batson
R. C.
, “
Intimal hyperplasia and neointima: an ultrastructural analysis of thrombosed graft in humans
,”
Surg.
,
93
(
6
):
809
881
,
1983
.
35.
Staalsen
N. H.
,
Ulrich
M.
,
Winther
J.
,
Pedersen
E. M.
,
How
T.
, and
Nygaard
H.
, “
The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo
,”
J. Vasc. Surg.
,
21
(
3
):
460
471
,
1995
.
36.
D. A. Steinman, C. R. Ethier, X. D. Zhang, and S. R. Karpik, “The effect of flow waveform on anastomotic wall shear stress patterns,” 1995 Advances in Bioengineering, ASME BED-Vol. 31, pp. 173–174, 1995.
37.
Steinman
D. A.
,
Vinh
B.
,
Ethier
C. R.
,
Ojha
M.
,
Cobbold
R. S. C.
, and
Johnston
K. W.
, “
A numerical simulation of flow in a two-dimensional end-to-side anastomosis model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
115
:
112
118
,
1993
.
38.
Taylor
C. A.
,
Hughes
T. J. R.
, and
Zarins
C. K.
, “
Computational investigation in vascular disease
,”
Computers in Physics
,
10
(
3
);
224
232
,
1996
.
39.
Trubel
W.
,
Moritz
A.
,
Schima
H.
,
Raderer
F.
,
Ullrich
R.
,
Losert
U.
, and
Polterauer
P.
, “
Compliance and formation of distal anastomotic intimal hyperplasia in dacron mesh tube constricted veins used as arterial bypass grafts
,”
ASAIO Journal
,
40
:
M283–M278
M283–M278
,
1994
.
40.
White
S. S.
,
Zarins
C. K.
,
Giddens
D. P.
,
Bassiouny
H.
,
Loth
F.
,
Jones
S. A.
, and
Glagov
S.
, “
Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number and hood length
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
115
:
104
111
,
1993
.
This content is only available via PDF.
You do not currently have access to this content.