Three-dimensional joint models are important tools for investigating mechanisms related to normal and pathological joints. Often these models necessitate accurate three-dimensional joint surface geometric data so that reliable model results can be obtained; however, in models based on small joints, this is often problematic due to limitations of the present techniques. These limitations include insufficient measurement precision, the requirement of contact for the measurement process, and lack of entire joint description. This study presents a new non-contact method for precise determination of entire joint surfaces using multistation digital photogrammetry (MDPG) and is demonstrated by determining the cartilage and subchondral bone surfaces of the cat patellofemoral (PF) joint. The digital camera–lens setup was precisely calibrated using 16 photographs arranged to achieve highly convergent geometry to estimate interior and distortion parameters of the camera–lens setup. Subsequently, six photographs of each joint surface were then acquired for surface measurement. The digital images were directly imported to a computer and newly introduced semi-automatic computer algorithms were used to precisely determine the image coordinates. Finally, a rigorous mathematical procedure named the bundle adjustment was used to determine the three-dimensional coordinates of the joint surfaces and to estimate the precision of the coordinates. These estimations were validated by comparing the MDPG measurements of a cylinder and plane to an analytical model. The joint surfaces were successfully measured using the MDPG method with mean precision estimates in the least favorable coordinate direction being 10.3 μm for subchondral bone and 17.9 μm for cartilage. The difference in measurement precision for bone and cartilage primarily reflects differences in the translucent properties of the surfaces.

1.
Atkinson, K. B., 1996, Close Range Photogrammetry and Machine Vision, Whittles Publishing, Scotland, UK.
2.
Ateshian
G. A.
,
Soslowsky
L. J.
, and
Mow
V. C.
,
1991
, “
Quantitation of articular surface topology and cartilage thickness in knee joints using stereophotogrammetry
,”
J. Biomechanics
, Vol.
24
, pp.
761
776
.
3.
Ateshian
G. A.
,
Rosenwasser
M. P.
, and
Mow
V. C.
,
1992
, “
Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints
,”
J. Biomechanics
, Vol.
25
, pp.
591
607
.
4.
Ateshian
G. A.
,
Kwak
S. D.
,
Soslowsky
L. J.
, and
Mow
V. C.
,
1994
, “
A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods
,”
J. Biomechanics
, Vol.
27
, No.
1
, pp.
111
124
.
5.
Blankevoort
L.
,
Huiskes
L.
, and
de Lange
A.
,
1988
, “
The envelope of passive knee joint motion
,”
J. Biomechanics
, Vol.
21
, pp.
705
720
.
6.
Boyd, S. K., 1997, “A 3D In-Situ Model for Patellofemoral Joint Contact Analysis in the Normal and Anterior Cruciate Ligament Deficient Knee,” MSc. Thesis, University of Calgary Press, Calgary, AB.
7.
Boyd
S. K.
, and
Ronsky
J. L.
,
1998
, “
Instantaneous Moment Arm Determination of the Cat Knee Joint
,”
J. Biomechanics
, Vol.
31
, No.
3
, pp.
279
283
.
8.
Boyd, S. K., Ronsky, J. L., Lichti, D. D., Salkauskas, K., and Chapman, M. A., 1997, “Quantification of Articular Cartilage Thickness of the Cat Patellofemoral Joint With Multi-Station Digital Photogrammetry and Thin-Plate Spline Surface Interpolation,” Proc. Bioengineering Conference ASME, Vol. 35, pp. 43–44.
9.
Bray
R. C.
,
Shrive
N. G.
,
Frank
C. B.
, and
Chimich
D. D.
,
1992
, “
The early effects of joint immobilization on the medial collateral ligament healing in an ACL-deficient knee: A gross anatomic and biomechanical investigation in the adult rabbit model
,”
J. Orthop. Res.
, Vol.
10
, pp.
157
166
.
10.
Cosandier
D.
, and
Chapman
M. A.
,
1992
, “
High precision target location for industrial metrology
,”
SPIE Videometrics
, Vol.
1820
, pp.
111
122
.
11.
Fo¨rstner
W.
,
1985
, “
The reliability of block triangulation
,”
Photogrammetric Engineering and Remote Sensing
, Vol.
51
, No.
6
, pp.
1137
1149
.
12.
Fraser
C. S.
,
1980
, “
Multiple focal setting self-calibration of close-range metric cameras
,”
Photogrammetric Engineering and Remote Sensing
, Vol.
46
, No.
9
, pp.
1161
1171
.
13.
Fraser
C. S.
,
1982
, “
Optimization of precision in close-range photogrammetry
,”
Photogrammetric Engineering and Remote Sensing
, Vol.
48
, No.
4
, pp.
561
570
.
14.
Fraser
C. S.
,
1984
, “
Network design considerations for non-topographic photogrammetry
,”
Photogrammetric Engineering and Remote Sensing
, Vol.
50
, No.
8
, pp.
1115
1126
.
15.
Fraser, C. S., Shortis, M. R., and Ganci, G., 1995, “Multi-sensor system self-calibration,” Proc. Videometrics IV, Vol. 2598, pp. 2–18.
16.
Ghosh
S. K.
,
1983
, “
A close-range photogrammetic system for 3-D measurements and perspective diagramming in biomechanics
,”
J. Biomechanics
, Vol.
16
, pp.
667
674
.
17.
Granshaw
S. I.
,
1980
, “
Bundle adjustment methods in engineering photogrammetry
,”
Photogrammetric Record
, Vol.
10
, No.
56
, pp.
181
207
.
18.
Herzog
W.
,
Adams
M. E.
,
Matyas
J. R.
, and
Brooks
J. G.
,
1993
, “
Hindlimb loading, morphology and biochemistry of articular cartilage in the ACL-deficient cat knee
,”
Osteoarthritis and Cartilage
, Vol.
1
, pp.
243
251
.
19.
Huiskes
R.
,
Kremers
J.
,
de Lange
A.
,
Woltring
H. J.
,
Selvik
G.
, and
van Rens
J. G.
,
1985
, “
Analytical Stereophotogrammetric Determination of Three-Dimensional Knee-Joint Geometry
,”
J. Biomechanics
, Vol.
18
, No.
8
, pp.
559
570
.
20.
Korvick
D. L.
,
Pijanowski
G. J.
, and
Schaeffer
D. J.
,
1994
, “
Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs
,”
J. Biomechanics
, Vol.
27
, pp.
77
87
.
21.
Kwak
S. D.
,
Colman
W. W.
,
Ateshian
G. A.
,
Grelsamer
R. P.
,
Henry
J. H.
, and
Mow
V. C.
,
1997
, “
Anatomy of the human patellofemoral joint articular cartilage: surface curvature analysis
,”
J. Orthop. Res.
, Vol.
15
, pp.
468
472
.
22.
Lichti, D. D., 1996, “Constrained finite element method self-calibration,” M.Sc. Thesis, University of Calgary Press, Calgary, AB.
23.
Lichti
D. D.
, and
Chapman
M. A.
,
1997
, “
Constrained FEM self-calibration
,”
Photogrammetric Engineering & Remote Sensing
, Vol.
63
, No.
9
, pp.
1111
1119
.
24.
Lichti
D. D.
,
Chapman
M. A.
,
Boyd
S. K.
, and
Ronsky
J. L.
,
1997
, “
Digital photogrammetric measurement of knee joint surfaces
,”
Photogrammetry and Remote Sensing
, Vol.
3
, pp.
283
292
.
25.
Mitchell
H. L.
,
1995
, “
Applications of digital photogrammetry to medical investigations
,”
ISPRS Journal of Photogrammetry and Remote Sensing
, Vol.
50
, No.
3
, pp.
27
36
.
26.
Pond
M. L.
, and
Nuki
G.
,
1973
, “
Experimentally-induced osteoarthritis in the dog
,”
Ann. Rheum. Dis.
, Vol.
32
, pp.
387
388
.
27.
Ray, S. F., 1994, Applied Photographic Optics, 2nd ed., Focal Press, Oxford, UK.
28.
Ronsky, J. L., 1994, “In-vivo patellofemoral joint contact,” PhD. Thesis, University of Calgary Press, Calgary, AB.
29.
Ronsky
J. L.
,
Herzog
W.
,
Brown
T. D.
,
Pedersen
D. R.
,
Grood
E. S.
, and
Butler
D. L.
,
1995
, “
In vivo quantification of the cat patellofemoral joint contact stresses and areas
,”
J. Biomechanics
, Vol.
28
, No.
8
, pp.
977
984
.
30.
Ronsky, J. L., Boyd, S. K., Lichti, D. D., Chapman, M. A., and Salkauskas, K., 1997, “Precise Measurement of Articular Cartilage Surface: Comparison of Multi-Station Digital Phologrammetry With 3D Digitization,” Proc. Bioengineering Conference ASME, Vol. 35, pp. 39–40.
31.
Scherrer
P. K.
, and
Hillberry
B. M.
,
1979
, “
Piece-wise mathematical representation of articular surfaces
,”
J. Biomechanics
, Vol.
12
, pp.
301
311
.
32.
Seedhom
B. B.
,
Longton
E. B.
,
Wright
V.
, and
Dowson
D.
,
1972
, “
Dimensions of the knee
,”
Ann. Rheum. Dis.
, Vol.
31
, pp.
54
58
.
33.
Shiba
R.
,
Sorbic
C.
,
Sin
D. W.
,
Bryant
J. T.
,
Cooke
D. V.
, and
Wevers
H. W.
,
1988
, “
Geometry of the humeroulnar joint
,”
J. Orthop. Res.
, Vol.
6
, pp.
897
906
.
34.
Soslowsky
L. J.
,
Flatow
E. L.
,
Bigliani
L. U.
,
Pawluk
R. J.
,
Ateshian
G. A.
, and
Mow
V. C.
,
1992
, “
Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study
,”
J. Orthop. Res.
, Vol.
10
, pp.
524
534
.
35.
Tabatabai
X. X.
, and
Mitchell
Y. Y.
,
1984
, “
Edge location to subpixel values in digital imagery
,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
, Vol.
6
, No.
2
, pp.
188
201
.
36.
Wismans
J.
,
Veldpaus
F.
,
Janssen
J.
,
Huson
A.
, and
Struben
P.
,
1980
, “
A three-dimensional mathematical model of the knee-joint
,”
J. Biomechanics
, Vol.
13
, pp.
667
685
.
37.
Wijk
M. C. van
,
1980
, “
Moire´ contourography — an accuracy analysis
,”
J. Biomechanics
, Vol.
13
, No.
7
, pp.
605
613
.
This content is only available via PDF.
You do not currently have access to this content.