Low-concentration biogels, which provide an extracellular matrix for cells in vitro, are involved in a number of important cell biological phenomena, such as cell motility and cell differentiation. In order to characterize soft tissues, which collapse under their own weight, we developed and standardized a new experimental device that enabled us to analyze the mechanical properties of floating biogels with low concentrations, i.e., with values ranging from 2 g/L to 5 g/L. In order to validate this approach, the mechanical responses of free floating agarose gel samples submitted to compression as well as stretching tests were quantified. The values of the Young’s moduli, measured in the range of 1000 to 10,000 Pa, are compared to the values obtained from other experimental techniques. Our results showed indeed that the values we obtained with our device closely match those obtained independently by performing compression tests on an Instron device. Thus, the floating gel technique is a useful tool first to characterize and then to model soft tissues that are used in biological science to study the interaction between cell and extracellular matrix.

1.
Amblard
F.
,
Maggs
A. C.
,
Yurke
B.
,
Pargellis
A. N.
, and
Leibler
S.
,
1996
, “
Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks
,”
Physical Review Letters
, Vol.
77
, No.
21
, pp.
4470
4473
.
2.
Barocas
V. H.
,
Moon
A. G.
, and
Tranquillo
R. T.
,
1995
, “
The Fibroblast-Populated Collagen Microsphere Assay of Cell Traction Force: Part 2 — Measurement of the Cell Traction Parameter
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
, pp.
161
170
.
3.
Chapuis
J. F.
, and
Agache
P.
,
1992
, “
A New Technique to Study the Mechanical Properties of Collagen Lattices
,”
J. Biomechanics
, Vol.
25
, No.
1
, pp.
115
120
.
4.
Delvoye
P.
,
Wiliquet
P.
,
Levˆeque
J. L.
,
Nusgens
B. V.
, and
Lapi`ere
C. M.
,
1991
, “
Measurement of Mechanical Forces Generated by Skin Fibroblasts Embedded in a Three-Dimensional Collagen Gel
,”
J. Invest. Dermatol.
, Vol.
97
, No.
5
, pp.
898
902
.
5.
Eastwood
M.
,
McGrouther
D. A.
, and
Brown
R. A.
,
1993
, “
A Culture Force Monitor for Measurement of Contraction Forces Generated in Human Dermal Fibroblasts Cultures: Evidence for Cell-Matrix Mechanical Signalling
,”
Biochim. Biophys. Acta
, Vol.
1201
, pp.
186
192
.
6.
Es Salhiene
M.
,
Vailhe
B.
,
Tracqui
Ph.
,
Gumery
P. Y.
, and
Tranqui
L.
,
1995
, “
Measurement of the Forces Exerted by Endothelial Cells Seeded Onto Fibrin Gels
,”
J. Mol. Cell.
, Vol.
7
,
A 462
, p.
27
27
.
7.
Ferrenq
I.
,
Tranqui
L.
,
Vailhe
B.
,
Gumery
P. Y.
, and
Tracqui
Ph.
,
1997
, “
Modelling Biological Gel Contraction by Cells: Mechanocellular Formulation and Cell Traction Force Quantification
,”
Acta Biotheoretica
, Vol.
45
, pp.
267
293
.
8.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, Wiley, New York.
9.
Gerth
C.
,
Roberts
W. W.
, and
Ferry
J. C.
,
1974
,
Biophys. Chem.
, Vol.
2
, p.
208
208
.
10.
Guenet, J. M., 1992, Thermoreversible Gelation of Polymers and Biopolymers, Academic Press, London.
11.
Guidry
C.
, and
Grinnel
F.
,
1986
, “
Contraction of Hydrated Collagen Gels by Fibroblasts: Evidence for Two Mechanisms by Which Collagen Fibrils Are Stabilized
,”
Collagen. Rel. Res.
, Vol.
6
, pp.
515
529
.
12.
Imeson, A., ed., 1997, Thickening and Gelling Agents for Food, Blackie Academic Alpha Professional, London, p. 320.
13.
Jain
M. K.
,
Berg
R. A.
, and
Tandon
G. B.
,
1990
, “
Mechanical Stress and Cellular Metabolism in Living Soft Tissue Composites
,”
Biomaterials
, Vol.
11
, pp.
465
472
.
14.
Jones
J. L.
, and
Marques
C. M.
,
1991
, “
Rigid Polymer Network Models
,”
Journal of Physics
, Vol.
51
, No.
11
, pp.
1113
1127
.
15.
Kolodney
M. S.
, and
Wysolmerski
R. B.
,
1992
, “
Isometric Contraction by Fibroblasts and Endothelial Cells in Tissue Culture: A Quantitative Study
,”
J. Cell Biol.
, Vol.
117
, No.
1
, pp.
73
82
.
16.
Kramer, O., 1988, Biological and Synthetic Polymer Networks, Elsevier Applied Science, London.
17.
Moon
A. G.
, and
Tranquillo
R. T.
,
1993
, “
The Fibroblast-Populated Collagen Microsphere Assay of Cell Traction Force—Part I: Continuum Model
,”
AlChE J.
, Vol.
39
, pp.
163
177
.
18.
Murray, J. D., 1993, Mathematical Biology, 2nd ed., Springer-Verlag.
19.
Murray
J. D.
, and
Oster
G. F.
,
1984
, “
Cell Traction Models for Generating Pattern and Form in Morphogenesis
,”
J. Math. Biol.
, Vol.
19
, No.
3
, pp.
265
279
.
20.
Nelb
G. W.
,
Gerth
C.
,
Ferry
J. D.
, and
Lorand
L.
,
1976
, “
Rheology of Fibrin Clots: Part 3, Shear Creep and Creep Recovery of Fine Ligated and Coarse Unligated Clots
,”
Biophys. Chem.
, Vol.
5
, pp.
377
387
.
21.
O¨zerdem
B.
, and
To¨zern
A.
,
1995
, “
Physical Response of Collagen Gels to Tensile Strain
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
, pp.
113
128
.
22.
Ramzi
M.
,
Rochas
C.
, and
Guenet
J. M.
,
1996
, “
Phase Behavior of Agarose in Binary Solvents
,”
Macromolecules
, Vol.
29
, No.
13
, pp.
4668
4674
.
23.
Robert, M. C., Provost, K., and Lefaucheux, F., 1992, Crystallization of Nucleic Acids and Proteins, Oxford University Press, Oxford, p. 127.
24.
Rochas
C.
, and
Lahaye
M.
,
1989
,
Carbohydr. Polymer
, Vol.
10
, pp.
289
298
.
25.
Rochas
C.
,
Bruˆlet
A.
, and
Guenet
J. M.
,
1994
,
Macromolecules
, Vol.
27
, pp.
3830
3835
.
26.
Ziemann
F.
,
Radler
J.
, and
Sackmann
E.
,
1994
, “
Local Measurements of Viscoelastic Moduli of Entangled Networks Using an Oscillating Magnetic Bead Micro-Rheometer
,”
Biophysical J.
, Vol.
66
, pp.
2210
2216
.
This content is only available via PDF.
You do not currently have access to this content.