We describe a new experimental methodology for visualizing three-dimensional structures in microscopic tubes under flow conditions. Through the use of microfabrication techniques, artificial venular bifurcations are constructed from glass tubes with semicircular cross sections (radius = 50 μ). Aqueous fluorescent solutions are infused into the tubes at flow rates of about 1 μ1/min, a value comparable to blood flow in the microcirculation. The flow is imaged using a combination of confocal microscopy and three-dimensional image reconstruction software techniques. The quantitative accuracy of the experimental method is evaluated by measuring the “separation surface,” a formation resulting from converging flows at a bifurcation. Details of the fabrication process, fluidics, confocal microscopy, image reconstructions, optical effects, and computations are described. We show the first three-dimensional visualization of a microscopic flow structure using confocal microscopy, and within certain limitations, quantitative agreement between the measured and computed positions of the separation surface.

1.
Barbee
K. A.
,
Davies
P. F.
, and
Lal
R.
,
1994
, “
Shear stress-induced reorganizations of the surface topography of endothelial cells imaged by atomic force microscopy
,”
Circ. Res.
, Vol.
74
, pp.
163
171
.
2.
Brenner, M., 1994, “Imaging dynamic events in living tissue using water immersion objectives,” American Laboratory, Apr., pp. 15–19.
3.
Brody
J. P.
,
Han
Y.
,
Austin
R. H.
, and
Bitensky
M.
,
1995
, “
Deformation and flow of red blood cells in a synthetic lattice: evidence for an active cytoskeleton
,”
Biophysical J.
, Vol.
68
, pp.
2224
2232
.
4.
Carlsson
K.
,
1991
, “
The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy
,”
J. Microscopy
, Vol.
163
, pp.
167
178
.
5.
Cokelet
G. R.
,
Soave
R.
,
Pugh
G.
, and
Rathbun
L.
,
1993
, “
Fabrication of in vitro microvascular blood flow systems by photolithography
,”
Microvas. Res.
, Vol.
46
, pp.
394
400
.
6.
Das
B.
,
Enden
G.
, and
Popel
A.
,
1997
, “
Stratified multi-phase model for blood flow in a venular bifurcation
,”
Ann. Biomed. Eng.
, Vol.
25
, pp.
135
153
.
7.
Enden
G.
, and
Popel
A. S.
,
1992
, “
A numerical study of the shape of the surface separating flow into branches in micriovascular bifurcations
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
398
405
.
8.
Hell
S.
,
Reiner
G.
,
Cremer
C.
, and
Stelzer
E. H. K.
,
1993
, “
Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index
,”
J. Microscopy
, Vol.
169
, pp.
391
405
.
9.
Hitt, D. L., and Lowe, M. L., 1997, “Confocal imaging and numerical simulations of converging flows in artificial microvessels,” Proceedings of Micro- and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications, P. Gourley, ed., Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, Vol. 2978, pp. 145–154.
10.
Johnson, P. C., 1986, “Flow measurement techniques in the microcirculation,” in: Microcirculatory Technology, Baker and Nastuk, eds., Academic Press, New York.
11.
Kikuchi
Y.
,
1995
, “
Effect of leukocytes and platelets on blood flow through a parallel array of microchannels: micro- and macroflow relation and rheological measures of leukocyte and platelet activitics
,”
Microvascular Research
, Vol.
50
, pp.
288
300
.
12.
Kikuchi
Y.
,
Sato
K.
, and
Mizuguchi
Y.
,
1994
, “
Modified cell-flow micro-channels in a single-crystal silicon substrate and flow behavior of blood cells
,”
Microvascular Research
, Vol.
47
, pp.
126
139
.
13.
Kikuchi
Y.
,
Sato
K.
,
Ohki
H.
, and
Kaneko
T.
,
1992
, “
Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology
,”
Microvascular Research
, Vol.
44
, pp.
226
240
.
14.
Lindley, C., 1991, Practical Image Processing in C, Wiley, New York.
15.
Lipowsky
H. H.
, and
Zweifach
B. W.
,
1977
, “
Methods for the simultaneous measurement of pressure differentials and flow in single unbranched vessels of the microcirculation for rheological studies
,”
Microvas. Res.
, Vol.
14
, pp.
345
361
.
16.
Majlof, L., and Forsgren, P., 1993, “Confocal microscopy: Important considerations for accurate imaging,” in: Methods in Cell Biology, Vol. 38, Matsumoto, B., ed., pp. 79–95.
17.
MMR Technologies, 1993, Mountain View, CA, (415)962–9620, private communication.
18.
Ong
J.
,
Enden
G.
, and
Popel
A.
,
1994
, “
Converging three-dimensional Stokes flow of two fluids in a T-type bifurcation
,”
J. Fluid Mech.
, Vol.
270
, pp.
51
71
.
19.
Rong
F. W.
, and
Carr
R. T.
,
1990
, “
Dye studies on flow through branching tubes
,”
Microvas. Res.
, Vol.
39
, pp.
186
202
.
20.
Sarkar
K.
, and
Prosperetti
A.
,
1996
, “
Effective boundary conditions for Stokes flow over a rough surface
,”
J. Fluid Mech.
, Vol.
316
, pp.
223
240
.
21.
Shen
Z.
, and
Lipowsky
H. H.
,
1997
, “
Image enhancement of the in vivo leukocyte—endothelium contact zone using optical sectioning microscopy
,”
Annals of Biomed. Eng.
, Vol.
25
, pp.
521
535
.
22.
Tracey
M. C.
,
Greenaway
R. S.
,
Das
A.
,
Kaye
P. H.
, and
Barnes
A. J.
,
1995
, “
A silicon micromachined device for use in blood cell deformability studies
,”
IEEE Trans. Biomed. Eng.
, Vol.
42
, pp.
751
761
.
23.
Visser
T. D.
,
Oud
J. L.
, and
Brakenhoff
G. J.
,
1992
, “
Refractive index and axial distance measurements in 3-D microscopy
,”
Optik
, Vol.
90
, pp.
17
19
.
24.
Wilding
P.
,
Pfahler
J.
,
Bau
H. H.
,
Zemel
J. N.
, and
Kricka
L. J.
,
1994
, “
Manipulation and flow of biological fluids in straight channels micromachined in silicon
,”
Clinical Chemistry
, Vol.
40
, pp.
43
47
.
25.
Xiao
G. Q.
,
Corle
T. R.
, and
Kino
G. S.
,
1988
, “
Real-time confocal scanning optical microscope
,”
Applied Physics Letters
, Vol.
53
, pp.
716
718
.
This content is only available via PDF.
You do not currently have access to this content.