As a first step toward development of a multiaxial failure criterion for human trabecular bone, the Tsai–Wu quadratic failure criterion was modified as a function of apparent density and applied to bovine tibial trabecular bone. Previous data from uniaxial compressive, tensile, and torsion tests (n = 139 total) were combined with those from new triaxial tests (n = 17) to calibrate and then verify the criterion. Combinations of axial compression and radial pressure were used to produce the triaxial compressive stress states. All tests were performed with minimal end artifacts in the principal material coordinate system of the trabecular network. Results indicated that the stress interaction term F12 exhibited a strong nonlinear dependence on apparent density (r2 > 0.99), ranging from −0.126 MPa−2 at low densities (0.29 g/cm3) to 0.005 MPa−2 at high densities (0.63 g/cm3). After calibration and when used to predict behavior of new specimens without any curve-fitting, the Tsai–Wu criterion had a mean (± SD) error of −32.6 ± 10.6 percent. Except for the highest density triaxial specimens, most (15/17 specimens) failed at axial stresses close to their predicted uniaxial values, and some reinforcement for transverse loading was observed. We conclude that the Tsai–Wu quadratic criterion, as formulated here, is at best only a reasonable predictor of the multiaxial failure behavior of trabecular bone, and further work is required before it can be confidently applied to human bone.

1.
Arramon
Y. P.
, and
Cowin
S. C.
,
1997
, “
Hydraulic stiffening of cancellous bone
,”
Forma
,
12
,
209
221
.
2.
Bagi
C. M.
,
Wilkie
D.
,
Georgelos
K.
,
Williams
D.
, and
Bertolini
D.
,
1997
, “
Morphological and structural characteristics of the proximal femur in human and rat
,”
Bone
,
21
,
261
267
.
3.
Bensusan
J. S.
,
Davy
D. T.
,
Heiple
K. G.
, and
Verdin
P. J.
,
1983
, “
Tensile, compressive and torsional testing of cancellous bone
,”
Trans ORS
,
8
,
132
132
.
4.
Brown
T. D.
, and
Ferguson
A. B.
,
1980
, “
Mechanical property distributions in the cancellous bone of the human proximal femur
,”
Acta Orthop. Scand.
,
51
,
429
437
.
5.
Brown
T. D.
,
Mutschler
T. A.
, and
Ferguson
A. B.
,
1982
, “
A non-linear finite element analysis of some early collapse processes in femoral head osteonecrosis
,”
J. Biomech.
,
15
,
705
715
.
6.
Carter
D.
,
Orr
T.
, and
Fyhrie
D.
,
1989
, “
Relationship between loading history and femoral cancellous bone architecture
,”
J. Biomech.
,
22
,
231
243
.
7.
Carter
D.
, and
Vasu
R.
,
1984
, “
Stress changes in the femoral head due to porous ingrowth surface replacement arthroplasty
,”
J. Biomech.
,
17
,
737
747
.
8.
Carter
D. R.
,
Schwab
G. H.
, and
Spengler
D. M.
,
1980
, “
Tensile fracture of cancellous bone
,”
Acta Orthop. Scand.
,
51
,
733
741
.
9.
Cezayirlioglu
H.
,
Bahniuk
E.
,
Davy
D. T.
, and
Heiple
K. G.
,
1985
, “
Anisotropic yield behavior of bone under combined axial force and torque
,”
J. Biomech.
,
18
,
61
69
.
10.
Cheal
E. J.
,
Hayes
W. C.
,
Lee
C. H.
,
Snyder
B. D.
, and
Miller
J.
,
1985
, “
Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depthm
,”
J. Orthop. Res.
,
3
,
424
434
.
11.
Cheal
E. J.
,
Snyder
B. D.
,
Nunamaker
D. M.
, and
Hayes
W. C.
,
1987
, “
Trabecular bone remodeling around smooth and porous implants in an equine patellar model
,”
J. Biomech.
,
20
,
1121
1134
.
12.
Ciarelli
M. J.
,
Goldstein
S. A.
,
Kuhn
J. L.
,
Cody
D. D.
, and
Brown
M. B.
,
1991
, “
Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography
,”
J. Orthop. Res.
,
9
,
674
682
.
13.
Cowin
S. C.
,
1979
, “
On the strength anisotropy of bone and wood
,”
ASME Journal of Applied Mechanics
,
46
,
832
838
.
14.
Cowin
S.
,
1986
a, “
Wolff’s Law of trabecular architecture at remodeling equilibrium
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
108
,
83
88
.
15.
Cowin
S. C.
,
1986
b, “
Fabric dependence of an anisotropic strength criterion
,”
Mech. Mater.
,
5
,
251
260
.
16.
Cowin, S. C., 1989, Bone Mechanics, CRC Press, Boca Raton, PL.
17.
Fenech
C. M.
, and
Keaveny
T. M.
,
1997
, “
Successful prediction of axial-shear failure properties of bovine trabecular bone using simple mechanistic criteria
,”
Trans. ORS
,
22
,
38
38
.
18.
Ford
C. M.
, and
Keaveny
T. M.
,
1996
, “
The dependence of shear failure properties of bovine tibial trabecular bone on apparent density and trabecular orientation
,”
J. Biomech.
,
29
,
1309
1317
.
19.
Fyhrie
D. P.
, and
Carter
D. R.
,
1990
, “
Femoral head apparent density distribution predicted from bone stresses
,”
J. Biomech.
,
23
,
1
10
.
20.
Gibson
L. J.
,
Ashby
M. F.
,
Zhang
J.
, and
Triantafillou
T. C.
,
1989
, “
Failure surfaces for cellular materials under multiaxial loads-I. Modelling
,”
Int. J. Mech. Sci.
,
31
,
635
663
.
21.
Goldstein
S. A.
,
1987
, “
The mechanical properties of trabecular bone: dependnce on anatomic location and function
,”
J. Biomech.
,
20
,
1055
1061
.
22.
Goulet
R. W.
,
Goldstein
S. A.
,
Ciarelli
M. J.
,
Kuhn
J. L.
,
Brown
M. B.
, and
Feldkamp
L. A.
,
1994
, “
The relationship between the structural and orthogonal compressive properties of trabecular bone
,”
J. Biomech.
,
27
,
375
389
.
23.
Hayes
W. C.
,
Swenson
L. W.
, and
Schurman
D. J.
,
1978
, “
Axisymmetric finite element analysis of the lateral tibial plateau
,”
J. Biomech.
,
11
,
21
33
.
24.
Hayes
W. C.
, and
Wright
T. M.
,
1977
, “
An empirical strength theory for compact bone
,”
Fracture
,
3
,
1173
1179
.
25.
Jensen
K. S.
,
Mosekilde
L.
, and
Mosekilde
L.
,
1990
, “
A model of vertebral trabecular bone architecture and its mechanical properties
,”
Bone
,
11
,
417
23
.
26.
Kaplan
S. J.
,
Hayes
W. C.
,
Stone
J. L.
, and
Beaupre
G. S.
,
1985
, “
Tensile strength of bovine trabecular bone
,”
J. Biomech.
,
18
,
723
727
.
27.
Keaveny
T. M.
,
Guo
X. E.
,
Wachtel
E. F.
,
McMahon
T. A.
, and
Hayes
W. C.
,
1994
a, “
Trabecular bone exhibits fully linear elastic behavior and yields at low strains
,”
J. Biomech.
,
27
,
1127
1136
.
28.
Keaveny
T. M.
,
Wachtel
E. F.
,
Cutler
M. J.
, and
Pinilla
T. P.
,
1994
b, “
Yield strains for bovine trabecular bone are isotropic but asymmetric
,”
Trans. ORS
,
19
,
428
428
.
29.
Keaveny
T. M.
,
Wachtel
E. F.
,
Ford
C. M.
, and
Hayes
W. C.
,
1994
c, “
Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus
,”
J. Biomech.
,
27
,
1137
1146
.
30.
Keaveny
T. M.
,
Pinilla
T. P.
,
Crawford
R. P.
,
Kopperdahl
D. L.
, and
Lou
A.
,
1997
, “
Systematic and random errors in compression testing of trabecular bone
,”
J. Orthop. Res.
,
15
,
101
110
.
31.
Lotz
J. C.
,
Cheal
E. J.
, and
Hayes
W. C.
,
1991
a, “
Fracture prediction for the proximal femur using finite element models: Part I—Linear analysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
113
,
353
360
.
32.
Lotz
J. C.
,
Cheal
E. J.
, and
Hayes
W. C.
,
1991
b, “
Fracture prediction for the proximal femur using finite element models: Part II—Nonlinear analysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
113
,
361
365
.
33.
Neil
J. L.
,
Demos
T. C.
,
Stone
J. L.
, and
Hayes
W. C.
,
1983
, “
Tensile and compressive properties of vertebral trabecular bone
,”
Trans. ORS
,
8
,
344
344
.
34.
Patel, M. R., 1969, “The deformation and fracture of rigid cellular plastics under multiaxial stress,” Ph.D. dissertation. University of California, Berkeley, CA.
35.
Patel
M. R.
, and
Finnie
I.
,
1970
, “
Structural features and mechanical properties of rigid cellular plastics
,”
J. Mater.
,
5
,
909
932
.
36.
Rice
J. C.
,
Cowin
S. C.
, and
Bowman
J. A.
,
1988
, “
On the dependence of the elasticity and strength of cancellous bone on apparent density
,”
J. Biomech.
,
21
,
155
168
.
37.
Rowlands, R. E., 1985, “Strength (failure) theories and their experimental correlations,” in: Handbook of Composites, 3, 71–125, G. C. Sih and A. M. Skudra, eds., Elsevier Science, Amsterdam.
38.
Silva
M. J.
, and
Gibson
L. J.
,
1997
a, “
The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids
,”
Int. J. Mech. Sci.
,
39
,
549
563
.
39.
Silva
M. J.
, and
Gibson
L. J.
,
1997
b, “
Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure
,”
Bone
,
21
,
191
199
.
40.
Simmons
C. A.
, and
Hipp
J. A.
,
1997
, “
Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone
,”
J. Bone Min. Res.
,
12
,
942
947
.
41.
Stone
J. L.
,
Beaupre
G. S.
, and
Hayes
W. C.
,
1983
, “
Multiaxial strength characteristics of trabecular bone
,”
J. Biomech.
,
16
,
743
752
.
42.
Townsend
P. R.
,
Raux
P.
,
Rose
R. M.
,
Miegel
R. E.
, and
Radin
E. L.
,
1975
, “
The distribution and anisotropy of the stiffness of cancellous bone in the human patella
,”
J. Biomech.
,
8
,
363
367
.
43.
Triantafillou
T. C.
,
Zhang
J.
,
Shercliff
T. L.
,
Gibson
L. J.
, and
Ashby
M. F.
,
1989
, “
Failure surfaces for cellular materials under multiaxial loads—II. Comparison of models with experiment
,”
Int. J. Meek Sci.
,
31
,
665
678
.
44.
Tsai
S.
, and
Wu
E.
,
1971
, “
A general theory for strength of anisotropic materials
,”
J. Comp. Mater.
,
5
,
58
80
.
45.
Turner
C. H.
,
Cowin
S. C.
,
Rho
J. Y.
,
Ashman
R. B.
, and
Rice
J. C.
,
1990
, “
The fabric dependence of the orthotropic elastic constants of cancellous bone
,”
J. Biomech.
,
23
,
549
561
.
46.
Vahey
J. W.
,
Lewis
J. L.
, and
Vanderby
R. J.
,
1987
, “
Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur
,”
J. Biomech.
,
20
,
29
33
.
47.
van Rietbergen
B.
,
Weinans
H.
,
Huiskes
R.
, and
Odgaard
A.
,
1995
, “
A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models
,”
J. Biomech.
,
28
,
69
81
.
48.
Vasu
R.
,
Carter
D. R.
, and
Harris
W. H.
,
1981
, “
Stress distributions in the acetabular region. I. Before and after total joint replacement
,”
J. Biomech.
,
15
,
155
164
.
49.
Wu, E., 1974, “Phenomenological anisotropic failure criterion,” in: Mechanics of Composite Materials, G. Sendecky, ed., Academic Press, New York, 353–431.
50.
Yahia
L. H.
,
Drouin
G.
, and
Duval
P.
,
1988
, “
A methodology for mechanical measurements of technical constants of trabecular bone
,”
Eng. in Med.
,
17
,
169
173
.
51.
Zaslawsky
M.
,
1973
, “
Multiaxial-stress studies on rigid polyurethane foam
,”
Exper. Mech.
,
2
,
70
76
.
This content is only available via PDF.
You do not currently have access to this content.