Surface properties, including topography and chemistry, are of prime importance in establishing the response of tissues to biomaterials. Microfabrication techniques have enabled the production of precisely controlled surface topographies that have been used as substrata for cells in culture and on devices implanted in vivo. This article reviews aspects of cell behavior involved in tissue response to implants with an emphasis on the effects of topography. Microfabricated grooved surfaces produce orientation and directed locomotion of epithelial cells in vitro and can inhibit epithelial downgrowth on implants. The effects depend on the groove dimensions and they are modified by epithelial cell–cell interactions. Fibroblasts similarly exhibit contact guidance on grooved surfaces, but fibroblast shape in vitro differs markedly from that found in vivo. Surface topography is important in establishing tissue organization adjacent to implants, with smooth surfaces generally being associated with fibrous tissue encapsulation. Grooved topographies appear to have promise in reducing encapsulation in the short term, but additional studies employing three-dimensional reconstruction and diverse topographies are needed to understand better the process of connective-tissue organization adjacent to implants. Microfabricated surfaces can increase the frequency of mineralized bone-like tissue nodules adjacent to subcutaneously implanted surfaces in rats. Orientation of these nodules with grooves occurs both in culture and on implants. Detailed comparisons of cell behavior on micromachined substrata in vitro and in vivo are difficult because of the number and complexity of factors, such as population density and micromotion, that can differ between these conditions.

1.
Abercrombie
M.
, and
Heaysman
J. E. M.
,
1954
, “
Invasiveness of sarcoma cells
,”
Nature
, Vol.
174
, p.
607
607
.
2.
Abiko
Y.
, and
Brunette
D. M.
,
1993
, “
Immunohistochemical investigation of tracks left by the migration of fibroblasts on titanium surfaces
,”
Cells and Materials
, Vol.
3
, pp.
161
170
.
3.
Baier, R. E., 1970, “Surface properties influencing biological adhesion,” in: Adhesion in Biological Systems, R. S. Manly, ed., Academic Press, New York, pp. 15–48.
4.
Baier
R. E.
,
1986
, “
Surface preparation
,”
J. Oral Implantology
, Vol.
12
, pp.
389
395
.
5.
Bellows
C. G.
,
Aubin
J. E.
,
Heersche
J. N.
, and
Antosz
M. E.
,
1986
, “
Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations
,”
Calcif. Tissue Int.
, Vol.
38
, pp.
143
154
.
6.
Ben-Zeev
A.
,
1991
, “
Animal cell shape changes and gene expression
,”
Bio. Essays
, Vol.
13
, pp.
207
212
.
7.
Britland
S.
,
Morgan
H.
,
Wojciak-Stothard
B.
,
Riehle
M.
,
Curtis
A.
, and
Wilkinson
C.
,
1996
, “
Synergistic and hierarchal adhesive and topographic guidance of BHK cells
,”
Exp. Cell Res.
, Vol.
228
, pp.
313
325
.
8.
Brunette
D. M.
,
Kenner
G. S.
, and
Gould
T. R. L.
,
1983
, “
Grooved titanium surfaces orient growth and migration of cells from human gingival explants
,”
J. Dent. Res.
, Vol.
62
, pp.
1045
1048
.
9.
Brunette
D. M.
,
1986
, “
Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions
,”
Exp. Cell Res.
, Vol.
164
, pp.
11
26
.
10.
Brunette
D. M.
,
1988
, “
The effects of surface topography on the behaviour of cells on implants
,”
Int. J. Oral Maxilliofacial Implantology
, Vol.
3
, pp.
231
246
.
11.
Carter
S. B.
,
1965
, “
Principles of cell motility: the direction of cell movement and cancer invasion
,”
Nature
, Vol.
208
, pp.
1183
1187
.
12.
Chehroudi
B.
,
Gould
T. R. L.
, and
Brunette
D. M.
,
1988
, “
Effects of a Grooved Epoxy Substratum on Epithelial Cell Behaviour in vitro and in vivo
,”
J. Biomed. Materials Res.
, Vol.
22
, pp.
459
473
.
13.
Chehroudi
B.
,
Gould
T. R. L.
, and
Brunette
D. M.
,
1990
, “
Titanium-coated micromachined grooves of different dimensions affect epithelial and connectivetissue cells differently in vivo
,”
J. Biomed. Materials Res.
, Vol.
24
, pp.
1203
1219
.
14.
Chehroudi
B.
,
Gould
T. R. L.
, and
Brunette
D. M.
,
1992
a, “
The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants
,”
J. Biomed. Materials Res.
, Vol.
264
, pp.
93
515
.
15.
Chehroudi
B.
,
Ratkay
J.
, and
Brunette
D. M.
,
1992
b, “
The role of implant surface geometry on mineralization in vivo and in vitro; a transmission and scanning electron microscopic study
,”
Cells and Materials
, Vol.
2
(2), pp.
89
104
.
16.
Chehroudi
B.
,
Sooranyi
E.
,
Black
N.
,
Weston
L.
, and
Brunette
D. M.
,
1995
, “
Computer-assisted three-dimensional reconstruction of epithelial cells attached to percutaneous implants
,”
J. Biomed. Materials Res.
, Vol.
29
, pp.
371
379
.
17.
Chehroudi
B.
,
McDonnel
D.
, and
Brunette
D. M.
,
1997
, “
The effects of micromachined surfaces on formation of bone-like tissue on subcutaneous implants as assessed by radiography and computer image processing
,”
J. Biomed. Materials Res.
, Vol.
34
, pp.
279
290
.
18.
Chen
C. S.
,
Mrksich
M.
,
Juang
S.
,
Whitesides
G. M.
, and
Ingber
D. E.
,
1997
, “
Geometric control of cell life and death
,”
Science
, Vol.
27
, pp.
1425
1428
.
19.
Clark
P.
,
Connolly
P.
,
Curtis
A. S. G.
,
Dow
J. A. T.
, and
Wilkinson
C. D. W.
,
1987
, “
Topographical control of cell behaviour
,”
Development
, Vol.
99
, pp.
439
448
.
20.
Chou
L.
,
Firth
J. D.
,
Uitto
V.-J.
, and
Brunette
D. M.
,
1995
, “
Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts
,”
J. Cell Sci.
, Vol.
108
, pp.
1563
1573
.
21.
Chou
L.
,
Firth
J. D.
,
Nathanson
D.
,
Uitto
V. J.
, and
Brunette
D. M.
,
1998
, “
Effects of titanium substratum and grooved surface topography on metalloproteinase-2-expression in human fibroblasts
,”
J. Biomed. Materials Res.
, Vol.
39
, pp.
437
445
.
22.
Curtis
A. S. G.
, and
Clark
P.
,
1990
, “
The effects of topographic and mechanical properties of materials on cell behavior
,”
Crit. Rev. Biocompat.
, Vol.
5
, pp.
343
362
.
23.
Damji
A.
,
Weston
L.
, and
Brunette
D. M.
,
1996
, “
Directed confrontations between fibroblasts and epithelial cells on micromachined grooved substrata
,”
Exp. Cell Res.
, Vol.
228
, pp.
114
124
.
24.
Davies
J. E.
,
1996
, “
In vitro modeling of the Bone/Implant interface
,”
Anatomical Record
, Vol.
245
, pp.
426
445
.
25.
den Braber
E. T.
,
de Ruijter
J. E.
, and
Jansen
J. A.
,
1997
, “
The of a subcutaneous silicone rubber implant with shallow surface microgrooves on the surrounding tissues in rabbits
,”
J. Biomed. Mater. Res.
, Vol.
15
, pp.
539
547
.
26.
Dunn
G.
, and
Jones
G.
,
1998
, “
Michael Abercrombie: the pioneer ethologist of cells
,”
Trends in Cell Biology
, Vol.
8
, pp.
124
127
.
27.
Dunn
G. A.
, and
Brown
A. F.
,
1986
, “
Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation
,”
J. Cell Sci.
, Vol.
83
, pp.
313
340
.
28.
Dunn, M. G., 1996, “Tissue Engineering strategies for ligament reconstruction,” Materials. Res. Soc., MRS Bulletin, pp. 143–146.
29.
Folkman
J.
, and
Moscona
A.
,
1978
, “
Role of cell shape in growth control
,”
Nature
, Vol.
273
, pp.
345
349
.
30.
Gould
T. R. L.
,
Brunette
D. M.
, and
Westbury
L.
,
1981
, “
The attachment mechanism of epithelial cells to titanium in vitro
,”
J. Perio. Res.
, Vol.
16
, pp.
611
616
.
31.
Gould
T. R. L.
,
Westbury
L.
, and
Brunette
D. M.
,
1984
, “
An ultrastructural study of the attachment of human gingiva to titanium in vivo
,”
J. Prosthet. Dent.
, Vol.
52
, pp.
418
420
.
32.
Green
A. M.
,
Jansen
J. A.
,
van der Waerden
J. P. C. M.
, and
von Recum
A. F.
,
1994
, “
Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface
,”
J. Biomed. Materials Res.
, Vol.
28
, pp.
647
653
.
33.
Harris, A. K., 1998, “Polarity and polarisation of fibroblasts in culture,” in: Cell Polarity, J. R. Bartles, ed., JAI Press inc., Greenwich, CT, in press.
34.
Harrison
R. G.
,
1914
, “
The reaction of embryonic cells to solid structures
,”
J. Exp. Zool.
, Vol.
14
, pp.
521
544
.
35.
Healy
K. E.
,
Thomas
C. H.
,
Rezania
A.
,
Kim
J. E.
,
McKeown
P. J.
,
Lom
B.
, and
Hockberger
P. E.
,
1996
, “
Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry
,”
Biomaterials
, Vol.
17
, pp.
195
208
.
36.
Hong
H. L.
, and
Brunette
D. M.
,
1987
, “
Effect of cell shape on proteinase secretion
,”
J. Cell Sci.
, Vol.
87
, pp.
259
267
.
37.
Ingber, D. E., 1998, “The Architecture of Life,” Scientific American, Vol. 48.
38.
Jaiswal
N.
,
Haynesworth
S. E.
,
Caplan
A. I.
, and
Bruder
S. P.
,
1997
, “
Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
,”
J. Cell Biochem.
, Vol.
64
, pp.
295
312
.
39.
Kawahara
H.
,
Kawahara
D.
,
Mimura
Y.
,
Takashima
Y.
, and
Ong
J. L.
,
1998
, “
Morphologic studies on the biologic seal of titanium dental implants. Report II. In vivo study on the defending mechanism of epithelial adhesions/attachment against invasive factors
,”
Int. J. Oral Maxillofac Implants
, Vol.
13
465
473
.
40.
Kieswetter
K.
,
Schwartz
Z.
,
Dean
D. D.
, and
Boyan
B. D.
,
1996
, “
The role of implant surface characteristics in the healing of bone
,”
Cril. Rev. Orat. Biol. Med.
, Vol.
7
, pp.
329
345
.
41.
Noble
P. B.
,
1987
, “
Extracellular matrix and cell migration: locomotory characteristics of MOS-1 1 cells within a three-dimensional hydrated collagen lattice
,”
J. Cell Sci.
, Vol.
87
, pp.
241
248
.
42.
Oakley
C.
, and
Brunette
D. M.
,
1993
, “
The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and groove titanium substrata
,”
J. Cell Sci.
, Vol.
106
, pp.
343
354
.
43.
Oakley
C.
, and
Brunette
D. M.
,
1995
, “
Topographic compensation: guidance and directed locomotion of fibroblasts on grooved micromachined substrata in the absence of microtubules
,”
Cell Motil. Cytoskeleton.
, Vol.
31
, pp.
45
58
.
44.
Oakley
C.
,
Jaeger
N. A. F.
, and
Brunette
D. M.
,
1997
, “
Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation on micromachined grooves of different dimensions
,”
Exp. Cell Res.
, Vol.
234
, pp.
413
424
.
45.
O’Hara
P. T.
, and
Buck
R. C.
,
1979
, “
Contact guidance in vitro—a light, transmission and scanning electron microscopic study
,”
Exp. Cell Res.
, Vol.
121
, pp.
235
249
.
46.
Qu
J.
,
Chehroudi
B.
, and
Brunette
D. M.
,
1996
, “
The use of micromachined surfaces to investigate the cell behavioural factors essential to osseointegration
,”
Oral Diseases
, Vol.
2
, pp.
102
115
.
47.
Rao
L. G.
,
Ng
B.
,
Brunette
D. M.
, and
Heersche
J. N.
,
1977
, “
Parathyroid hormone- and prostaglandin El-response in a selected population of bone cells after repeated subculture and storage at −80C
,”
Endocrinol
, Vol.
100
, pp.
1233
1241
.
48.
Ricci
J. L.
,
Gona
A. G.
, and
Alexander
H.
,
1991
, “
In vitro tendon cell growth rates on a synthetic fiber scaffold material and on standard culture plates
,”
J. Biomed. Mater. Res.
, Vol.
25
, pp.
651
666
.
49.
Rich
A.
, and
Harris
A. K.
,
1981
, “
Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata
,”
J. Cell. Sci
, Vol.
50
, pp.
1
7
.
50.
Rovensky
Y. A.
,
Bershadsky
A. D.
,
Givargizov
E. I.
,
Obolenskaya
L. N.
, and
Vasiliev
J. M.
,
1991
, “
Spreading of mouse fibroblasts on the substrate with multiple spikes
,”
Exp. Cell Res.
, Vol.
197
, pp.
107
112
.
51.
Schwarz
R.
,
Colarusso
L.
, and
Doty
P.
,
1976
, “
Maintenance of differentiation in primary cultures of avian tendon cells
,”
Exp. Cell Res.
, Vol.
102
, pp.
63
71
.
52.
Shakesheff
K.
,
Cannizzaro
S.
, and
Langer
R.
,
1998
, “
Creating biomimetic microenvironments with synthetic polymer-peptide hybrid molecules
,”
J. Biomater. Sci Polym.
, Vol.
9
, pp.
507
518
.
53.
Soll
D. R.
,
1995
, “
The use of computers in understanding how animal cells crawl
,”
Int Rev. Cytology
, Vol.
163
, pp.
43
104
.
54.
Stoker
A. W.
,
Streuli
C. H.
,
Martins-Green
M.
, and
Bissell
M. J.
,
1990
, “
Designer microenvironments for the analysis of cell and tissue function
,”
Curr. Opin. Cell Biol.
, Vol.
2
, pp.
864
974
.
55.
Szmukler-Moncler
S.
,
Salama
H.
,
Reingewirtz
Y.
, and
Dubruille
J. H.
,
1998
, “
Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature
,”
J. Biomed. Mater. Res.
, Vol.
43
, pp.
192
203
.
56.
Thorogood
P.
, and
Wood
A.
,
1987
, “
Analysis of in vivo cell movement using transparent tissue systems
,”
J. Cell Sci. Suppl
, Vol.
8
, pp.
395
413
.
57.
Wang
N.
,
Butler
J. P.
, and
Ingber
D. E.
,
1993
, “
Mechanotransduction across the cell surface and through the cytoskeleton
,”
Science
, Vol.
260
, pp.
1124
1127
.
58.
Weiss
P.
,
1959
, “
Interactions between cells
,”
Rev. Mod. Phy.
, Vol.
31
, pp.
11
20
.
59.
Werb
Z.
,
Hembry
R. M.
,
Murphy
G.
, and
Aggeler
J.
,
1986
, “
Commitment to expression of the metalloendopeptidases, collagenase and stromelysin: relationship of inducing events to changes in cytoskeletal architecture
,”
J. Cell Biol.
, Vol.
102
, pp.
697
702
.
60.
Williams
D. F.
,
1989
, “
A model for biocompatibility and its evaluation
,”
J. Biomed. Engineering
, Vol.
11
, pp.
185
191
.
61.
Wojciak-Stothard
B.
,
Curtis
A. S. G.
,
Monaghan
W.
,
McGrath
M.
,
Sommer
I.
, and
Wilkinson
C. D. W.
,
1995
, “
Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata
,”
Cell Motility and the Cytoskeleton
, Vol.
31
, pp.
147
158
.
62.
Wood
A.
,
1988
, “
Contact guidance on microfabricated substrata: the response of teleost fin mesenchyme cells to repeating topographical patterns
,”
J. Cell Sci.
, Vol.
90
, pp.
667
681
.
This content is only available via PDF.
You do not currently have access to this content.