In-vivo tendon forces are commonly measured using transducers, which detect tension in the tendon fibers. A poorly understood source of measurement errors is the difference in stress distribution within the tendon between experimental and transducer calibration conditions. The objective of this study was to investigate this source of error, and to determine whether these errors could be minimized by proper selection of transducer size. The study was conducted using the infrapatellar ligament (patellar tendon) of New Zealand White rabbits. Tendon force was measured with two different size implantable force transducers (IFTs), one Wide and one Narrow, and by a strain gaged load cell in series with the tendon. Tests were conducted at five different loading conditions selected to produce five different stress distributions within the tendon. One loading condition corresponded to a typical post-experiment calibration, and the data from that condition were used to develop a calibration equation for the transducer. The errors that resulted from using this calibration were determined by comparing the tendon force measured by the in-series load cell with the force predicted from the IFT output using the calibration equation. Changes in stress distribution produced measurement errors up to 64 N with the Narrow IFT but only 24 N with the Wide IFT. We found the measurement error was dependent on sensor width. Our results support the hypothesis that measurement errors can be caused by differences in tendon stress distribution between calibration and experimental conditions. We further showed that these errors can be minimized by using an IFT, which samples the tension in a large percentage of the tendon fibers. Information from this study can be used for selection of an appropriately sized implantable force transducer for measuring tendon and ligament force.

1.
Ahmed
A. M.
,
Hyder
A.
,
Burke
D. L.
, and
Chan
H. K.
,
1987
, “
In Vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading
,”
J. Orthop. Res.
, Vol.
5
, pp.
217
230
.
2.
Arms
S. W.
,
Boyle
J.
,
Johnson
R.
, and
Pope
M.
,
1983
a, “
Strain Measurement in the Medial Collateral Ligament of the Human Knee
,”
J. Biomechanics
, Vol.
16
, pp.
491
496
.
3.
Arms
S. W.
,
Pope
M. H.
,
Johnson
R. J.
,
Fischer
R. A.
,
Arvidson
I.
, and
Erikson
E.
,
1983
b, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
Amer. J. Sports Med.
, Vol.
12
, pp.
8
18
.
4.
Barnes
G. R. G.
, and
Pinder
D. N.
,
1974
, “
In Vitro Tendon and Bone Strain Measurement and Correlation
,”
J. Biomechanics
, Vol.
7
, pp.
35
42
.
5.
Beynnon
B. D.
,
Pope
M. H.
,
Fleming
B. C.
,
Howe
J. G.
,
Johnson
R. J.
,
Erickson
A. R.
,
Wentherimimer
C. M.
, and
Nicols
C.
,
1990
, “
An In Vivo Study of the ACL Strain Biomechanics in the Normal Knee
,”
Trans. Orthop. Res. Soc.
, Vol.
14
, pp.
324
324
.
6.
Butler
D. L.
,
Sheh
M. Y.
,
Stouffer
D. C.
,
Samaranayake
V. A.
, and
Levy
M. S.
,
1990
, “
Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
38
45
.
7.
Cummings
J. F.
,
Holden
J. P.
,
Grood
E. S.
,
Wroble
R. R.
,
Butler
D. L.
, and
Schager
J. A.
,
1991
, “
In Vivo Measurement of Patellar Tendon Forces and Joint Position in the Goat Model
,”
Trans. Orthop. Res. Soc.
, Vol.
16
, p.
601
601
.
8.
Edwards
R. G.
,
Lafferty
J. F.
, and
Lange
K. O.
,
1970
, “
Ligament Strain in the Human Knee Joint
,”
ASME Journal of Basic Engineering
, Vol.
92
, pp.
131
136
.
9.
Glos
D. L.
,
Butler
D. L.
,
Grood
E. S.
, and
Levy
M. L.
,
1993
, “
In Vitro Evaluation of an Implantable Force Transducer (IFT) in a Patellar Tendon Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
335
343
.
10.
Gregor
R. J.
,
Komi
P. V.
, and
Jaervinen
M.
,
1987
, “
Achilles Tendon Forces During Cycling
,”
Int. J. Sports Med.
, Vol.
8
, pp.
9
14
(supplement).
11.
Herzog
W.
,
Archambault
J. M.
,
Leonard
T. R.
, and
Nguyen
H. K.
,
1996
a, “
Evaluation of the Implantable Force Transducer for Chronic Tendon-Force Recordings
,”
J. Biomechanics
, Vol.
29
, pp.
103
109
.
12.
Herzog
W.
,
Hasler
E. M.
, and
Leonard
T. R.
,
1996
b, “
In-Situ Calibration of the Implantable Force Transducer
,”
J. Biomechanics
, Vol.
29
, pp.
1649
1952
.
13.
Holden
J. P.
,
Grood
E. S.
,
Korvick
D. L.
,
Cummings
J. F.
,
Butler
D. L.
, and
Bylski-Austrow
D. I.
,
1994
, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomechanics
, Vol.
27
, pp.
517
526
.
14.
Holden
J. P.
,
Grood
E. S.
, and
Cummings
J. F.
,
1995
, “
Factors Affecting Sensitivity of a Transducer for Measuring Anterior Cruciate Ligament Force
,”
J. Biomechanics
, Vol.
28
, No.
1
, pp.
99
102
.
15.
Kain
C. C.
,
McCarthy
J. A.
,
Arms
S.
,
Pope
M. H.
,
Steadman
R.
,
Manske
P. R.
, and
Shively
R. A.
,
1988
, “
An In Vivo Analysis of the Effect of Transcutaneous Electrical Stimulation of the Quadriceps and Hamstrings on Anterior Cruciate Ligament Deformation
,”
Amer. J. Sports Med.
, Vol.
16
, No.
2
, pp.
147
152
.
16.
Kennedy
J. C.
,
Hawkins
R. J.
, and
Willis
R. B.
,
1977
, “
Strain Gauge Analysis of Knee Ligaments
,”
Clin. Ortho. & Relat. Res.
, Vol.
129
, pp.
225
229
17.
Komi
P. V.
,
Salonen
M.
,
Jaervinen
M.
, and
Kokko
O.
,
1987
, “
In Vivo Registration of Achilles Tension Forces in Man. I. Methodological Development
,”
Int. J. Sports Med.
, Vol.
8
, pp.
3
8
(supplement).
18.
Komi
P.
,
1990
, “
Relevance of In Vivo Force Measurements to Human Biomechanics
,”
J Biomechanics
, Vol.
23
, pp.
23
34
(supplement 1).
19.
Korvick, D. L., Rupert, M. P., Holden, J. P., Grood, E. S., and Cummings, J. F., 1992, “Peak In Vivo Forces in the Anterior Cruciate Ligament and Patellar Tendon During Various Activities: Preliminary Studies in a Goat,” ASME Advances in Bioengineering, Vol. 22, pp. 95–97.
20.
Korvick
D. L.
,
Cummings
J. F.
,
Grood
E. S.
,
Holden
J. P.
,
Feder
S. M.
, and
Butler
D. L.
,
1996
, “
The Use of an Implantable Force Transducer to Measure Patellar Tendon Forces in Goats
,”
J. Biomechanics
, Vol.
29
, pp.
557
561
.
21.
Lewis
J. L.
,
Lew
W. D.
, and
Schmidt
J.
,
1982
, “
A Note on the Application and Evaluation of the Buckle Transducer for Knee Ligament Force Measurement
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
104
, pp.
125
128
.
22.
Lochner
F. K.
,
Milne
D. W.
,
Mills
E. J.
, and
Groom
J. J.
,
1980
, “
In Vivo and In Vitro Measurement of Tendon Strain in the Horse
,”
Am. J. Vet. Res.
, Vol.
41
, No.
12
, pp.
1929
1937
.
23.
Montgomery, D. C., 1997, Design and Analysis of Experiments, 4th ed., Wiley, New York.
24.
Renstrom
P.
,
Arms
S. W.
,
Stanwyck
T. S.
,
Johnson
R. J.
, and
Pope
M. H.
,
1986
, “
Strain Within the Anterior Cruciate Ligament During Hamstring and Quadriceps Activity
,”
Am. J. Sports Med
, Vol.
14
, No.
1
, pp.
83
87
.
25.
Ronsky
J. L.
,
Herzog
W.
,
Brown
T. D.
,
Pedersen
D. R.
,
Grood
E. S.
, and
Butler
D. L.
,
1995
, “
In Vivo Quantification of the Cat Patellofemoral Joint Contact Stresses and Areas
,”
J. Biomechanics
, Vol.
28
, No.
8
, pp.
977
983
.
26.
Snedecor, G. W., and Cochran, W. G., 1967, Statistical Methods, 6th ed., The Iowa State University Press, Ames, IA.
27.
Xu
W. S.
,
Butler
D. L.
,
Stouffer
D. C.
,
Grood
E. S.
, and
Glos
D. L.
,
1991
, “
Theoretical Analysis of an Implantable Force Transducer for Tendon and Ligament Structures
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
170
177
.
This content is only available via PDF.
You do not currently have access to this content.