An experimental technique was developed to determine the finite strain field in heterogeneous, diseased human aortic cross sections at physiologic pressures in vitro. Also, the distributions within the cross sections of four histologic features (disease-free zones, lipid accumulations, fibrous intimal tissue, and regions of calcification) were quantified using light microscopic morphometry. A model incorporating heterogeneous, plane stress finite elements coupled the experimental and histologic data. Tissue constituent mechanical properties were determined through an optimization strategy, and the distributions of stress and strain energy in the diseased vascular wall were calculated. Results show that the constituents of atherosclerotic lesions exhibit large differences in their bilinear mechanical properties. The distributions of stress and strain energy in the diseased vascular wall are strongly influenced by both lesion structure and composition. These results suggest that accounting for heterogeneities in the mechanical analysis of atherosclerotic arterial tissue is critical to establishing links between lesion morphology and the susceptibility of plaque to mechanical disruption in vivo.

1.
Accorsi
M. L.
,
1988
, “
A method for modelling microstructural material discontinuities in a finite element analysis
,”
Intl. J. Num. Meth. Engng.
, Vol.
26
, pp.
2187
2197
.
2.
Amerenco
P.
,
Duyckaerts
C.
,
Tzurio
C.
,
Henin
D.
,
Bousser
M. G.
, and
Hauww
J. J.
,
1992
, “
The prevalence of ulcerated plaques in the aortic arch in patients with stroke
,”
N. Eng. J. Mod.
, Vol
362
, pp.
221
225
.
3.
Bathe, K. J., 1996, Finite Element Procedures in Engineering Analysis, Prentice Hall.
4.
Beattie, D. K., 1996, “The Mechanics of Heterogeneous Arteries: Implications for Human Atherosclerosis,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
5.
Boresi, A. P., and Chong, K. P., 1987, Elasticity in Engineering Mechanics, Elsevier.
6.
Born, G. V. R., and Richardson, P. D., 1990, “Mechanical properties of human atherosclerotic lesions,” in: Pathobiology of the Human Atherosclerotic Plaque, Springer Verlag.
7.
Cheng
G. C.
,
Loree
H. M.
,
Kamm
R. D.
,
Fishbein
M. C.
, and
Lee
R. T.
,
1993
, “
Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: A structural analysis with histopathological correlation
,”
Circ.
, Vol.
87
, pp.
1179
1187
.
8.
Davies
M. J.
,
1990
, “
A macro and micro view of coronary vascular insult in ischemic heart disease
,”
Circ.
, Vol.
82
(
suppl. II)
, pp.
II/38–II/46
II/38–II/46
.
9.
Depr´e
C.
,
Wijns
W.
,
Robert
A. M.
,
Renkin
J. P.
, and
Havaux
X.
,
1997
, “
Pathology of unstable plaque: correlation with the clinical severity of acute coronary syndromes
,”
J. Amer. Coll. Cardial.
, Vol.
30
(
3)
, pp.
694
702
.
10.
Falk
E.
,
Shah
P. K.
, and
Fuster
V.
,
1995
, “
Coronary plaque disruption
,”
Circ.
, Vol.
92
(
3)
, pp.
657
671
.
11.
Fuster
V.
,
1994
, “
Mechanisms leading to myocardial infarction: insights from studies of vascular biology
,”
Circ.
, Vol.
90
(
4)
, pp.
2126
2146
.
12.
Galis
Z.
,
Sukhova
G.
,
Kranzhofer
R.
,
Clark
S.
, and
Libby
P.
,
1994
, “
Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques
,”
J. Clin. Invest.
, Vol.
94
, pp.
2493
2503
.
13.
Glagov
S.
,
Bassiouny
H. S.
,
Sakaguchi
Y.
,
Goudet
C. A.
, and
Vito
R. P.
,
1997
, “
Mechanical determinants of plaque modeling, remodeling and disruption
,”
Atheroscler.
, Vol.
131
(Suppl.), pp.
S13–S14
S13–S14
.
14.
Glagov
S.
,
Bassiouny
H. S.
,
Giddens
D. P.
, and
Zarins
C. K.
,
1995
, “
Intimal thickening: morphogenesis, functional significance and detection
,”
J. Vascular Invest.
, Vol.
1
(
1)
, pp.
2
14
.
15.
Goudet, C., 1995, “Finite Element Analysis of Diseased Cross-Sections of Human Carotid Arteries,” M. S. thesis, Georgia Institute of Technology, Atlanta, GA.
16.
Imura
T.
,
Yamamoto
K.
,
Satoh
T.
,
Kanamori
K.
,
Mikami
T.
, and
Yasuda
H.
,
1990
, “
In vivo viscoelastic behavior in the human aorta
,”
Circ. Res.
, Vol.
66
, pp.
1413
1419
.
17.
Jacoby, S. L. S., Kowalik, J. S., and Pizzo, J. T., 1972, Iterative Methods for Nonlinear Optimization Problems, Prentice-Hall.
18.
Lee
R. T.
,
Grodzinsky
A. J.
,
Frank
E. H.
,
Kamm
R. D.
, and
Schoen
F. J.
,
1991
, “
Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques
,”
Circ.
, Vol.
83
, pp.
1764
1770
.
19.
Lee
R. T.
,
Schoen
F. J.
,
Loree
H. M.
,
Lark
M. W.
, and
Libby
P.
,
1996
, “
Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis: implications for plaque rupture
,”
Arterioscler. Thromb. Vasc. Biol.
, Vol.
16
, pp.
1070
1073
.
20.
Lendon
C. L.
,
Davies
M. J.
,
Richardson
P. D.
, and
Born
G. V. R.
,
1993
, “
Testing of small connective tissue specimens for the determination of the mechanical behavior of atherosclerotic plaques
,”
J. Biomed. Engng.
, Vol.
15
, pp.
27
33
.
21.
Loree
H. M.
,
Kamm
R. D.
,
Stringfellow
R. G.
, and
Lee
R. T.
,
1992
, “
Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels
,”
Circ. Res.
, Vol.
71
, pp.
850
858
.
22.
Loree
H. M.
,
Tobias
B. J.
,
Gibson
L. J.
,
Kamm
R. D.
,
Small
D. M.
, and
Lee
R. T.
,
1994
a, “
Mechanical properties of model atherosclerotic lesion lipid pools
,”
Arterioscler. Thromb.
, Vol.
14
, pp.
230
234
.
23.
Loree
H. M.
,
Grodzinsky
A. J.
,
Park
S. Y.
,
Gibson
L. J.
, and
Lee
R. T.
,
1994
b, “
Static circumferential tangential modulus of human atherosclerotic tissue
,”
J. Biomech.
, Vol.
27
(
2)
, pp.
195
204
.
24.
Nelder
J. A.
, and
Mead
R.
,
1965
, “
A simplex method for function minimization
,”
Computer J.
, Vol.
7
, pp.
308
313
.
25.
Richardson, P. D., Davies, M. J., and Born, G. V. R., 1989, “Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques,” The Lancet, pp. 941–944.
26.
Russ, J. C., 1992, The Image Processing Handbook, CRC Press.
27.
Salunke, N. V., Topoleski, L. D. T., Mergner, W. J., and Humphrey, J. D., 1997, “Stress relaxation of human atherosclerotic plaque,” Proc. 23rd Annual Meeting of the Society for Biomaterials, New Orleans, LA, p. 300.
28.
Salzar
R. S.
,
Thubrikar
M. J.
, and
Eppink
R. T.
,
1995
, “
Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis
,”
J. Biomech.
, Vol.
28
(
11)
, pp.
1333
1345
.
29.
Simon
B. R.
,
Kaufmann
M. V.
,
McAfee
M. A.
, and
Baldwin
A. L.
,
1993
, “
Finite element models for arterial wall mechanics
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
489
496
.
30.
Weizsacker
H. W.
, and
Pinto
J. G.
,
1988
, “
Isotropy and anisotropy of the arterial wall
,”
J. Biomech.
, Vol.
21
(
6)
, pp.
477
487
.
31.
Whang, M. C., 1994, “Correlation Between Mechanical and Histological Measurements in Human Atherosclerotic Aorta,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
32.
Wolinsky
H.
, and
Glagov
S.
,
1964
, “
Structural basis for the static mechanical properties of the aortic media
,”
Circ. Res.
, Vol.
14
, pp.
400
413
.
33.
Zhang
J.
, and
Katsube
N.
,
1994
, “
Problems related to application of eigenstrains in a finite element analysis
,”
Intl. J. Num. Meth. Engng.
, Vol.
37
, pp.
3185
3193
.
34.
Zienkiewicz, O. C., 1977, The Finite Element Method, McGraw-Hill.
This content is only available via PDF.
You do not currently have access to this content.