Huang et al. (1997) propose a new hypothesis and develop a mathematical model to explain rationally the in vitro and in situ measured changes (Tedgui and Lever, 1984; Baldwin and Wilson, 1993) in the hydraulic conductivity of the artery wall of rabbit aorta with transmural pressure. The model leads to the intriguing prediction that this hydraulic conductivity would decrease by one half if the thin intimal layer between the endothelium and the internal elastic lamina volume-compresses approximately fivefold. This paper presents the first measurements of the effect of transmural pressure on intimal layer thickness and shows that the intimal matrix is, indeed, surprisingly compressible. We perfusion-fixed rat thoracic aortas in situ with 2 percent glutaraldehyde solution at 0, 50, 100, or 150 mm Hg lumen pressure and sectioned for light and electron microscopic observations. Electron micrographs show a dramatic, nonlinear decrease in average intimal thickness, i.e., 0.62 ± 0.26, 0.27 ± 0.14, 0.15 ± 0.10, and 0.12 ± 0.07 (SD) μm for 0, 50, 100, and 150 mm Hg lumen pressure, respectively. The volume strain of the intima is more than 20 times greater than the radial strain of the artery wall due to hoop tension and two orders of magnitude greater than the consolidation of the artery wall as a whole assuming constant medial density (Chuong and Fung, 1984). Moreover, in both light and electron microscopic observations, it is easy to find numerous sites where the endothelium puckers into the fenestral pores at high lumen pressure, as predicted by the theory in Huang et al. (1997). In contrast, the average diameter of a fenestral pore increases only 10 percent as the lumen pressure is increased from 0 to 150 mm Hg. These results indicate that the thin intimal layer comprising less than 1 percent of the wall thickness can have a profound effect on the filtration properties of the wall due to the large change in Darcy permeability of the layer and the large reduction in the entrance area of the flow entering the fenestral pores, though the pores themselves experience only a minor enlargement due to hoop tension.

1.
Baldwin
 
A. L.
, and
Wilson
 
L. M.
,
1993
, “
Endothelium Increases Medial Hydraulic Conductance of Aorta, Possibly by Release of EDRF
,”
Am. J. Physiol.
, Vol.
264
, pp.
H26–H32
H26–H32
.
2.
Campbell
 
G. J.
, and
Roach
 
M. R.
,
1981
, “
Fenestrations in the Internal Elastic Lamina at Bifurcation of Human Cerebral Arteries
,”
Stroke
, Vol.
112
, No.
4
, pp.
489
496
.
3.
Chuang
 
P.
,
Cheng
 
J.
,
Lin
 
S.
,
Jan
 
K.
,
Wang
 
D.
, and
Chien
 
S.
,
1990
, “
Macromolecular Transport Across Arterial and Venous Endothelium in Rats: Studies With Evans Blue-Albumin and Horseradish Peroxidase
,”
Arteriosclerosis
, Vol.
10
, pp.
188
197
.
4.
Chuong
 
C. J.
, and
Fung
 
Y. C.
,
1984
, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
, Vol.
17
, pp.
35
40
.
5.
Dunmore
 
P. J.
,
Song
 
S. H.
, and
Roach
 
M. R.
,
1990
, “
A Comparison of the Size of Fenestrations in the Internal Elastic Lamina of Young and Old Porcine Aortas as Seen With the Scanning Electron Microscope
,”
Can. J. Physiol. Pharmacol.
, Vol.
68
, pp.
139
143
.
6.
Frank
 
J. S.
, and
Fogelman
 
A. M.
,
1989
, “
Ultrastructure of the Intima in WHHL and Cholesterol-Fed Rabbit Aortas Prepared by Ultra-Rapid Freezing and Freeze–Etching
,”
Journal of Lipid Research
, Vol.
30
, pp.
967
978
.
7.
Huang
 
Y.
,
Rumschitzki
 
D.
,
Chien
 
S.
, and
Weinbaum
 
S.
,
1994
, “
A Fiber Matrix Model for the Growth of Macromolecular Leakage Spots in the Arterial Intima
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
430
445
.
8.
Huang
 
Y.
,
Rumschitzki
 
D.
,
Chien
 
S.
, and
Weinbaum
 
S.
,
1997
, “
A Fiber Matrix Model for the Filtration Through Fenestral Pores in a Compressible Arterial Intima
,”
Am. J. Physiol.
, Vol.
272
(Heart Circ. Physiol., 41), pp.
H2023–H2039
H2023–H2039
.
9.
Lark
 
M. W.
,
Yeo
 
T.
,
Mar
 
H.
,
Lara
 
S.
,
Hellstro¨m
 
I.
,
Hellstro¨m
 
K.
, and
Wight
 
T. N.
,
1988
, “
Arterial Chondroitin Sulfate Proteoglycan: Localization With a Monoclonal Antibody
,”
The Journal of Histochemistry and Cytochemistry
, Vol.
36
, pp.
1211
1221
.
10.
Lee
 
M. M.
, and
Chien
 
S.
,
1979
, “
Morphologic Effects of Pressure Changes on Canine Carotid Artery Endothelium as Observed by Scanning Electron Microscopy
,”
Anat. Rec.
, Vol.
194
, pp.
1
14
.
11.
Lin
 
S.
,
Jan
 
K.
,
Schuessler
 
G.
,
Weinbaum
 
S.
, and
Chien
 
S.
,
1988
, “
Enhanced Macromolecular Permeability of Aortic Endothelial Cells in Association With Mitosis
,”
Arteriosclerosis
, Vol.
73
, pp.
223
232
.
12.
Potter
 
R. F.
, and
Roach
 
M. R.
,
1983
, “
Are Enlarged Fenestrations in the Internal Elastic Lamina of the Rabbit Thoracic Aorta Associated With Poststenotic Dilatation?
Can. J. Physiol. Pharmacol.
, Vol.
61
, pp.
101
104
.
13.
Song
 
S. H.
, and
Roach
 
M. R.
,
1983
, “
Quantitative Changes in the Size of Fenestrations of the Elastic Laminae of Sheep Thoracic Aorta Studied With SEM
,”
Blood Vessels
, Vol.
20
, pp.
145
153
.
14.
Song
 
S. H.
, and
Roach
 
M. R.
,
1984
, “
Comparison of Fenestrations in Internal Elastic Lamina of Canine Thoracic and Abdominal Aortas
,”
Blood Vessels
, Vol.
21
, pp.
90
97
.
15.
Tedgui
 
A.
, and
Lever
 
M. J.
,
1984
, “
Filtration Through Damaged and Undamaged Rabbit Thoracic Aorta
,”
American Journal of Physiology
, Vol.
247
, pp.
H784–H791
H784–H791
.
16.
Tedgui
 
A.
, and
Lever
 
M. J.
,
1987
, “
Effect of Pressure and Intimal Damage on 131I-Albumin and [14C] Sucrose Spaces in Aorta
,”
American Journal of Physiology
, Vol.
253
, pp.
H1530–H1539
H1530–H1539
.
17.
Truskey
 
G. A.
,
Roberts
 
W. L.
,
Herrmann
 
R. A.
, and
Malinauskas
 
R. A.
,
1992
, “
Measurement of Endothelial Permeability to 125I-low Density Lipoproteins in Rabbit Arteries by Use of En Face Preparations
,”
Circulation Res.
, Vol.
71
, No.
4
, pp.
883
897
.
18.
Underwood, E. E., 1970, Quantitative Stereology, Addison-Wesley Publishing Company, MA.
19.
Weibel, E. R., 1963, Morphometry of the Human Lung, Springer–Verlag, Berlin.
20.
Wight
 
T. N.
, and
Hascall
 
V. C.
,
1983
, “
Proteoglycans in Primate Arteries. III. Characterization of the Proteoglycans Synthesized by Arterial Smooth Muscle Cells in Culture
,”
J. Cell Biol.
, Vol.
96
, pp.
167
176
.
21.
Yuan
 
F.
,
Chien
 
S.
, and
Weinbaum
 
S.
,
1991
, “
A New View of Convective-Diffusive Transport Processes in the Arterial Intima
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
314
329
.
This content is only available via PDF.
You do not currently have access to this content.