A viscoelastic finite element model of a L2-L3 motion segment was constructed and used to study: (1) the behavior of the intervertebral disc with different amounts of nucleus fluid loss; and (2) the effect of different rates of fluid loss on the viscoelastic behavior of the disc. The results indicate that: (1) The viscoelastic behavior of the intervertebral disc depends to a large extent on the rate of fluid loss from the disc; the intrinsic properties of disc tissue play a role only at the early stage of compressive loading; (2) the axial strain increases, whereas the intradiscal pressure and the posterior radial disc bulge decrease with increasing fluid loss; (3) a decreasing fluid loss rate with a total fluid loss of 10 to 20 percent (from the nucleus) during the first hour of compressive loading best predicts the overall viscoelastic behavior of a disc.

1.
ABAQUS/Standard User’s manual, 1994, Hibbitt, Karlsson & Sorensen, Inc., Vol. I, Version 5.3.
2.
Adams
M. A.
, and
Hutton
W. C.
,
1980
, “
The effect of posture on the role of the apophysical joints in resisting intervertebral compressive forces
,”
J. Bone Joint Surg.
,
62B
,
358
362
.
3.
Adams
M. A.
, and
Hutton
W. C.
,
1983
, “
The effect of posture on the fluid content of lumbar intervertebral discs
,”
Spine
,
8
,
665
671
.
4.
Adams
M. A.
,
Dolan
P.
,
Hutton
W. C.
, and
Porter
R. W.
,
1987
, “
Diurnal variations in the stresses on the lumbar spine
,”
Spine
,
12
,
130
137
.
5.
Adams, M. A., and Hutton, W. C., 1988, “Mechanics of the intervertebral disc,” in: The Biology of the Intervertebral Disc, Peter Ghosh ed., pp. 46–47, CRC Press, Inc., Boca Raton, FL.
6.
Adams
M. A.
,
Dolan
P.
,
Hutton
W. C.
, and
Porter
R. W.
,
1990
, “
Diurnal changes in spinal mechanics and their clinical significance
,”
J. Bone Joint Surg.
,
72B
,
266
270
.
7.
Anson, B. J., 1950, Atlas of Human Anatomy, W. B. Saunders, Philadelphia, PA.
8.
Armstrong
C. G.
, and
Mow
V. C.
,
1982
, “
Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content
,”
J. Bone Joint Surg.
,
64A
,
88
94
.
9.
Ashman
R. B.
,
Cowin
S. C.
,
van Buskirk
W. C.
, and
Rice
J. C.
,
1984
, “
A continuous wave technique for the measurement of the elastic properties of critical bone
,”
J. Biomechanics
,
17
,
349
361
.
10.
Berkson
M. H.
,
Nachemson
A.
, and
Schultz
A. B.
,
1979
, “
Mechanical properties of human lumbar spine motion segments—Part II. Responses in compression and shear; influence of gross morphology
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
101
,
53
57
.
11.
Best
B. A.
,
Setton
L. A.
,
Guilak
F.
,
Ratcliffe
A.
,
Weidenbaum
M.
, and
Mow
V. C.
,
1989
, “
Permeability and compressive stiffness of annulus fibrosus: variation with site and composition
,”
Tran. Orthop. Res. Soc.
,
14
,
354
354
.
12.
Best
B. A.
,
Guilak
F.
,
Setton
L. A.
,
Zhu
W.
,
Saed-Nejad
F.
,
Ratcliffe
A.
,
Weidenbaum
M.
, and
Mow
V. C.
,
1994
, “
Compressive mechanical properties of the human anulus fibrosus and their relationship to biomechanical composition
,”
Spine
,
19
,
212
221
.
13.
Botsford
D. J.
,
Esses
S. I.
, and
Ogilvie-Harris
D. J.
,
1994
, “
In vivo diurnal variation in intervertebral disc volume and morphology
,”
Spine
,
19
,
935
940
.
14.
Brown
T.
,
Hansen
R. J.
, and
Yorra
A. J.
,
1957
, “
Some mechanical tests on the lumbosacral spine with particular reference to intervertebral dises
,”
J. Bone Joint Surgery
,
39
,
1135
64
.
15.
Bullough, P. G., 1992, “Atlas of orthopedic pathology with clinical and radiological correlation,” 2nd ed., pp. 12.4–12.6, Gower Medical Publishing, New York-London.
16.
Burns
M. L.
,
Kaleps
I.
, and
Kazarian
L. E.
,
1984
, “
Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models—Part I. Human intervertebral joints
,”
J. Biomechanics
,
17
,
113
130
.
17.
Chazal
J.
,
Tanguy
A.
,
Bourges
M.
,
Gaurel
G.
,
Escande
G.
,
Guillot
M.
, and
Vanneuville
G.
,
1985
, “
Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction
,”
J. Biomechanics
,
18
,
167
176
.
18.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and applications of finite element analysis, 3rd ed., pp. 437–443, Wiley, New York.
19.
Dunlop
R. B.
,
Adams
M. A.
, and
Hutton
W. C.
,
1984
, “
Disc space narrowing and the lumbar facet joints
,”
J. Bone Joint Surg.
,
66B
,
706
710
.
20.
Furlong
D. R.
, and
Palazotto
A. N.
,
1983
, “
A finite-element analysis of the influence of surgical herniation on the viscoelastic properties of the intervertebral disc
,”
J. Biomechanics
,
16
,
785
795
.
21.
Galante
J. O.
,
1967
, “
Tensile properties of the human lumber annulus fibrosus
,”
Acta Ortho. Scand.
,
100
(suppl),
1
91
.
22.
Goel
V. K.
,
Kong
W.
,
Han
J. S.
,
Weinstein
J. N.
, and
Gilbertson
L. G.
,
1993
, “
A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles
,”
Spine
,
18
,
1531
1541
.
23.
Goel
V. K.
,
Monroe
B. T.
,
Gilbertson
L. G.
,
Brinckmann
P.
,
1995
, “
Interlaminar shear stresses and laminæ separation in a disc: Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads
,”
Spine
,
20
,
689
698
.
24.
Grant, J. C. B., 1956, An Atlas of Anatomy, 4th ed., Williamson and Wilkins. Janeway, T., 1994, “Water content and viscoelastic behavior of the intervertebral disc,” Master’s thesis, Department of Bioengineering, Clemson University.
25.
Kaleps
I.
,
Kazarian
L. E.
, and
Burns
M. L.
,
1984
, “
Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-Solid models. Part II. Rhesus monkey intervertebral joints
,”
J. Biomechanics
,
17
,
131
136
.
26.
Katz
J. L.
, and
Meunier
A.
,
1987
, “
The elastic anisotropy of bone
,”
J. Biomechanics
,
20
,
1063
1070
.
27.
Keaveny
T. M.
, and
Hayes
W. C.
,
1993
, “
A 20-ycar perspective on the mechanical properties of trabecular bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
115
,
534
542
.
28.
Keller
T. S.
,
Spengler
D. M.
, and
Hansson
T. H.
,
1987
, “
Mechanical behavior of the human lumbar spine, I. Creep analysis during static compressive loading
,”
J. Orthop. Res.
,
5
,
467
478
.
29.
Keller
T. S.
,
Holm
S. H.
,
Hansson
T. H.
, and
Spengler
D. M.
,
1990
, “
The dependence of intervertebral disc mechanical properties on physiologic conditions
,”
Spine
,
15
,
751
761
.
30.
Laible
J. P.
,
Pflaster
D.
,
Simon
B. R.
,
Krag
M. H.
,
Pope
M.
, and
Haugh
L. D.
,
1994
, “
A dynamic material parameter estimation for soft tissue using a poroelastic finite element model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
116
:
19
29
.
31.
Li
S.
,
Patwardhan
A. G.
,
Amiroche
F. M. L.
,
Havey
R.
, and
Meade
K. P.
,
1995
, “
Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression
,”
J. Biomechanics
,
28
,
779
790
.
32.
Lu, Y. M., Hutton, W. C., and Gharpuray, V. M., 1995, “Can variations in intervertebral disc height affect the mechanical function of the disc?” Spine, in press.
33.
Marchand
F.
, and
Ahmed
A. M.
,
1989
, “
Mechanical properties and failure mechanisms of the lumbar disc anulus
,”
Trans. Orthop. Res. Soc.
,
14
,
355
355
.
34.
Marchand
F.
, and
Ahmed
A.
,
1990
, “
Investigation of the laminate structure of lumbar disc anulus fibrosus
,”
Spine
,
15
,
402
410
.
35.
Mow, V. C., Zhu, W., and Rateliffe, A., 1991, “Structure and function of articular cartilage and meniscus,” in: Basic othopaedic biomechanics, Mow, V. C., Hayes, W. C., eds., pp. 143–197, Raven Press, New York.
36.
Nachemson
A.
,
1960
, “
Lumbar intradiscal pressure, experimental studies on post-mortem material
,”
Acta Orthop. Scand.
,
43
(Suppl),
1
100
.
37.
Neumann
P.
,
Keller
T. S.
,
Ekstrom
L.
,
Perry
L.
,
Hansson
T. H.
, and
Spengler
D. M.
,
1992
, “
Mechanical properties of the human lumbar anterior longitudinal ligament
,”
J. Biomechanics
,
25
,
1185
1194
.
38.
Ohshima
H.
,
Tsuji
H.
,
Hirano
N.
,
Ishihara
H.
,
Katoh
Y.
, and
Yamada
H.
,
1989
, “
Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load
,”
Spine
,
14
,
1234
1244
.
39.
Pearce
R. H.
, and
Grimmer
B. J.
,
1983
, “
Target tissue models: The proteoglycans and degeneration of the human intervertebral disc
,”
J. Rheumatology
(Suppl),
11
:
108
110
.
40.
Pintar
F. A.
,
Yoganandan
N.
,
Myers
T.
,
Elhagediab
A.
, and
Sances
A.
,
1992
, “
Biomechanical properties of human lumbar spine ligaments
,”
J. Biomechanics
,
25
,
1351
1356
.
41.
Rao
A. A.
, and
Dumas
G. A.
,
1991
, “
Influence of material properties on the mechanical behavior of the L5-S1 intervertebral disc in compression: a nonlinear finite element study
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
13
,
139
151
.
42.
Reilly
D. T.
, and
Burstein
A. H.
,
1975
, “
The elastic and ultimate properties of compact bone tissue
,”
J. Biomechanics
,
8
,
393
405
.
43.
Setton
L. A.
,
Zhu
W.
,
Weidenbaum
M.
,
Rateliffe
A.
, and
Mow
V. C.
,
1993
, “
Compressive properties of cartilaginous end-plate of the baboon lumbar spine
,”
J. Orthop. Res.
,
11
,
228
239
.
44.
Shirazi-Adl
S. A.
,
Shrivastava
S. C.
, and
Ahmed
A. M.
,
1984
, “
Stress analysis of the lumbar disc body unit in compression: A three dimensional nonlinear finite element study
,”
Spine
,
9
,
120
134
.
45.
Shirazi-Adl
S. A.
,
1992
, “
Finite-element simulation of changes in the fluid content of human lumbar discs, Mechanical and clinical implications
,”
Spine
,
17
,
206
212
.
46.
Simon
B. R.
,
Wu
J. S. S.
,
Carlton
M. W.
,
Evans
J. H.
, and
Kazarian
L. E.
,
1985
, “
Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
107
:
327
335
.
47.
Simon
B. R.
,
Laible
J. P.
,
Pflaster
D.
,
Yuan
Y.
, and
Krag
M. H.
,
1996
, “
A poroelastic finite element model including transport and swelling in soft tissue structures
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
118
:
1
9
.
48.
Skaggs
D. L.
,
Weidenbaum
M.
,
Iatridis
J. C.
,
Rateliffe
A.
, and
Mow
V. C.
,
1994
, “
Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus
,”
Spine
,
19
,
1310
1319
.
49.
Ueno
K.
, and
Liu
Y. K.
,
1987
, “
A three dimensional nonlinear finite element model of lumbar intervertebral joint in torsion
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
109
,
200
209
.
50.
Urban
J. P. G.
, and
McMullin
J. F.
,
1988
, “
Swelling pressure of the lumbar intervertebral discs: Influence of age, spinal level, composition, and degeneration
,”
Spine
,
13
,
179
187
.
51.
Waters
R. L.
, and
Morris
J. M.
,
1973
, “
An in vitro study of normal and scoliotic interspinous ligaments
,”
J. Biomechanics
,
6
,
343
348
.
52.
Wu
H. C.
, and
Yao
R. F.
,
1976
, “
Mechanical behavior of the human annulus fibrosus
,”
J. Biomechanics
,
9
,
1
7
.
53.
Yahia
L. H.
,
Audet
J.
, and
Drouin
G.
,
1991
, “
Rheological properties of the human lumbar spine ligaments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
13
,
399
406
.
54.
Yoon
H. S.
, and
Katz
J. L.
,
1976
, “
Ultrasonic wave propagation in human cortical bone. II. Measurements of elastic properties and microhardness
,”
J. Biomechanics
,
9
,
459
464
.
This content is only available via PDF.
You do not currently have access to this content.