Experimental evidence suggests that the tensile behavior of tendons and ligaments is in part a function of tissue hydration. The models currently available do not offer a means by which the hydration effects might be explicitly explored. To study these effects, a finite element model of a collagen sub-fascicle, a substructure of tendon and ligament, was formulated. The model was microstructurally based, and simulated oriented collagen fibrils with elastic-orthotropic continuum elements. Poroelastic elements were used to model the interfibrillar matrix. The collagen fiber morphology reflected in the model interacted with the interfibrillar matrix to produce behaviors similar to those seen in tendon and ligament during tensile, cyclic, and relaxation experiments conducted by others. Various states of hydration and permeability were parametrically investigated, demonstrating their influence on the tensile response of the model.

1.
Abaqus, 1994, “Theory Manual,” Version 5.4, Hibbitt, Karlsson, and Sorenson. Inc., pp. 4.4.1.
2.
Belkoff
S. M.
, and
Haut
R. C.
,
1992
, “
Microstructurally based model analysis of γ-irradiated tendon allografts
,”
J. Othop. Res.
, Vol.
10
, pp.
461
464
.
3.
Best
B. A.
,
Setton
L. A.
,
Guilak
A.
,
Ratcliffe
A.
,
Weidenbaum
M.
, and
Mow
V. C.
,
1989
, “
Permeability and compressive stiffness of annulus fibrosus: variation with site and composition
,”
Trans. Orthop. Res. Soc.
, Vol.
14
, p.
354
354
.
4.
Butler
D. L.
,
Matthew
D. K.
, and
Donald
C. S.
,
1986
, “
Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments
,”
J. Biomech.
, Vol.
19
, No.
6
, pp.
425
432
.
5.
Chen, C., McCabe, R., and Vanderby, R. Jr., 1995, “Two electrokinetic phenomena in rabbit patellar tendon: pressure and voltage,” Proc. ASME Bioengineering Conf., Beaver Creek, CO, pp. 31–32.
6.
Chen, C. T., Vanderby, R., Graf, B. K., and Malkus, D. S., 1993, “Interstitial fluid flow in ligaments and tendons: effects of fibril spacing and fluid properties,” Proc. ASME Bioengineering Conf., Breckenridge, CO, pp. 399-402.
7.
Chen
C. T.
, and
Vanderby
R.
,
1994
, “
3-D finite element analysis to investigate anisotropic permeability for interstitial fluid flow in ligaments and tendons
,”
Trans. Orthop. Res. Soc.
, Vol.
19
, p.
643
643
.
8.
Chimich
D. D.
,
Shrive
N. G.
,
Frank
C. B.
,
Marchuk
L.
, and
Bray
R. C.
,
1992
, “
Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament
,”
J. Biomech.
, Vol.
25
(
8
), pp.
831
837
.
9.
Danylchuk, K. D., Finlay, J. B., and Krcek, J. P., 1978, “Microstructural organization of human and bovine cruciate ligaments,” Clinical Orthopaedics and Related Research, No. 131, pp. 294–298.
10.
Hannafin
J. A.
, and
Arnoczky
S. P.
,
1994
, “
Effect of cyclic and static tensile loading on the water content and solute diffusion in canine flexor tendons: an invitro study
,”
J. Orthop. Res.
, Vol.
12
, pp.
350
356
.
11.
Haut, R. C., 1983, “Correlation between strain-rate-sensitivity in rat tail tendon and tissue glycosaminoglycans,” Proc. ASME Biomechanics Symposium, pp. 221–224.
12.
Haut
R. C.
, and
Powlison
A. C.
,
1990
, “
The effects of test environment and cyclic stretching on the failure properties of human patella tendons
,”
J. Orthop. Res.
, Vol.
8
, pp.
532
540
.
13.
Haut, R. C., 1993, “The mechanical and viscoelastic properties of the anterior cruciate ligament and of ACL fascicles,” in: The Anterior Cruciate Ligament: Current and Future Concepts, Jackson, D. W., et al., eds. Raven Press, Ltd., New York.
14.
Haut, T. L., Jayaraman, R. C., and Haut, R. C., 1995, “Water content determines the strain rate sensitive stiffness of human patellar tendon,” Advances in Bioengineering, ASME BED-Vol. 31, pp. 61–62.
15.
Kastelic
J.
,
Galeski
A.
, and
Baer
E.
,
1978
, “
The multicomposite structure of tendon
,”
Connective Tissue Res.
, Vol.
6
, pp.
11
23
.
16.
Kwan
M. K.
, and
Woo
S. L.-Y.
,
1989
, “
A structural model to describe the nonlinear stress-strain behavior for parallel-fibered collagenous tissues
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
361
363
.
17.
Laible
J. P.
,
Pflaster
D.
,
Simon
B. R.
,
Krag
M. H.
,
Pope
M.
, and
Haugh
L. D.
,
1994
, “
A dynamic material parameter estimation procedure for soft tissue using a poroelastic finite element model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
(
1
), pp.
19
29
.
18.
Lanir
Y.
,
1978
, “
Structure-strength relations in mammalian tendon
,”
Biophysical J.
, Vol.
24
, pp.
541
554
.
19.
Lanir
Y.
,
Saland
E. L.
, and
Foux
A.
,
1988
, “
Physico-chemical and micro-structural changes in collagen fiber bundles following stretch in-vitro
,”
Biorheology J.
, Vol.
25
(
4
), pp.
591
604
.
20.
Mow
V. C.
,
Holmes
M. H.
, and
Lai
W. M.
,
1984
, “
Fluid transport and mechanical properties of articular cartilage: a review
,”
J. Biomech.
, Vol.
17
(
5
), pp.
377
394
.
21.
Mow, V. C., and Hayes, W. C., 1991, Basic Orthopaedic Biomechanics, Raven Press, Ltd., New York, pp. 143–243.
22.
Simbeya, K. W., Shrive, N. G., Frank, C. B., and Matyas, J. R., 1993, “A micro-mechanical finite element model of the rabbit medial collateral ligament,” Recent Advances in Computer Methods in Biomechanics and Biomedical Engineering, Middleton, J., Pande, G., and Williams, K., eds., Books and Journals Ltd., Swansea, pp. 240–249.
23.
Suh
J.
, and
Spilker
R. L.
,
1994
, “
Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
1
9
.
24.
Thielke, R. J., Vanderby, R., Jr., and Grood, E. S., 1995, “Volumetric changes in ligaments under tension,” Proc. ASME Bioengineering Conf., Breckenridge, CO, pp. 197-198.
25.
Viidik, A., 1990, “Structure and function of normal and healing tendons and ligaments,” in: Biomechanics of Diarthrodial Joints Vol. 1, Mow, V. C. Ratcliffe, A., and Woo, S. L.-Y., eds., Springer-Verlag, New York, p. 3–12.
26.
Wilson, A. N., Frank, C. B., and Shrive, N. G., 1994, “The behaviour of water in the rabbit medial collateral ligament,” Proc. Second World Congress of Biomechanics, Blankevoort, L., and Kooloos, J. G. M., eds., Amsterdam, The Netherlands, p. 226b.
27.
Yahia
L. H.
, and
Drouin
G.
,
1988
, “
Collagen structure in human anterior cruciate ligament and patellar tendon
,”
J. Mat. Sci.
, Vol.
23
, pp.
3750
3755
.
28.
Yahia
L. H.
, and
Drouin
G.
,
1989
, “
Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture
,”
J. Orthop. Res.
, Vol.
7
, pp.
243
251
.
29.
Yamamoto, E., Kozaburo, H., and Yamamoto, N., 1995, “Mechanical properties of collagen fascicles of stress-shielded patellar tendons in the rabbit,” Proc. Bioengineering Conf., Beaver Creek, CO, pp. 199–200.
30.
Zienkiewicz, O. C., and Naylor, D. J., 1972, “The adaptation of critical state solid mechanics theory for use in finite elements,” in: Stress-Strain Behavior of Soils, Parry, R. H. G., ed., Foulis and Co, pp. 537–543.
This content is only available via PDF.
You do not currently have access to this content.