Investigations of valvular regurgitation attempt to specify flow field characteristics and apply them to the proximal isovelocity surface area (PISA) method for quantifying regurgitant flow. Most investigators assume a hemispherical shape to these equivelocity shells proximal to an axisymmetric (circular) orifice. However, in vivo flow fields are viscous and regurgitant openings vary in shape and size. By using centerline profiles and isovelocity surfaces, this investigation describes the flow field proximal to circular and elliptical orifices. Steady, proximal flow fields are obtained with two- and three-dimensional computational fluid dynamic (CFD) simulations. These simulations are verified by in vitro, laser-Doppler velocimetry (LDV) experiments. The data show that a unique, normalized proximal flow field results for each orifice shape independent of orifice flow or size. The distinct differences in flow field characteristics with orifice shape may provide a mechanism for evaluating orifice characteristics and regurgitant flows. Instead of the hemispherical approximation technique, this study attempts to show the potential to define a universal flow evaluation method based on the details of the flowfield according to orifice shape. Preliminary results indicate that Magnetic Resonance (MR) and Color Doppler (CD) may reproduce these flow details and allow such a procedure in vivo.

1.
Anayiotos
A.
,
Perry
G. J.
,
Myers
J. G.
,
Green
D. W.
,
Fan
P. H.
, and
Nanda
N. C.
,
1995
, “
A Numerical and Experimental Investigation of the Flow Acceleration Region Proximal to an Orifice
,”
Ultrasound Med. Biol.
, Vol.
21
, No.
4
, pp.
501
516
.
2.
Bargiggia
G. S.
,
Tronconi
L.
,
Sahn
D. J.
,
Recusani
F.
,
Raisaro
A.
,
De Servi
S.
,
Valdes-Cruz
L. M.
, and
Montemartini
C.
,
1991
, “
A New Method for Quantification of Mitral Regurgitation Based on Color Flow Doppler Imaging of Flow Convergence Proximal to Regurgitant Orifice
,”
Circulation
, Vol.
84
, pp.
1481
1489
.
3.
Barclay
S. A.
,
Eidenvall
L.
,
Karlsson
M.
,
Andersson
G.
,
Xiong
C.
,
Ask
P.
,
Loyd
D.
, and
Wranne
B.
,
1993
, “
The Shape of the Proximal Isovelocity Surface Area Varies With Regurgitant Orifice Size and Distance From the Orifice: Computer Simulation and Model Experiments With Color M-Mode Technique
,”
J. Am. Soc. Echocardiogr.
, Vol.
6
, pp.
433
445
.
4.
Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A., 1978, The Mechanics of the Circulation, Oxford University Press.
5.
Chen
C.
,
Koschyk
D.
,
Brockhoff
C.
,
Heik
S.
,
Hamm
C.
,
Bleifeld
W.
, and
Kupper
W.
,
1993
, “
Noninvasive Estimation of Regurgitant Flow Rate and Volume in Patients With Mitral Regurgitation by Color Mapping of Accelerating Flow Field
,”
J. Am. Coll. Cardiol.
, Vol.
21
, pp.
374
383
.
6.
Durst, F., Melling, A., and Whitelow, G. H., 1976, Principles and Practice of Laser-Doppler Anemometry, Academic Press, New York.
7.
Fox
J. F.
,
Anayiotos
A. S.
,
Doyle
M.
, and
Perry
G. J.
,
1995
, “
Performance of Phase Contrast Angiography in Quantifying Valvular Regurgitation: An InVitro Model
,”
Advances in Bioengineering
, Vol.
31
, pp.
361
362
.
8.
Giesler
M. O.
, and
Stauch
M.
,
1992
, “
CD Determination of Regurgitant Flow: From Proximal Isovelocity Surface Areas to Proximal Velocity Profiles
,”
Echocardiography
, Vol.
9
, pp.
51
62
.
9.
Holman, J. P., 1989, Experimental Methods for Engineers, McGraw-Hill, New York.
10.
Myers
J. G.
,
Green
D. W.
,
Anayiotos
A. S.
,
Perry
G. J.
,
Nanda
N. C.
, and
Fan
P.
,
1993
, “
A Numerical Simulation of the Proximal Convergence Region of a Regurgitant Orifice
,”
Advances in Bioengineering
, Vol.
23
, pp.
559
562
.
11.
Perry
G. J.
,
Anayiotos
A. S.
,
Green
D. W.
,
Myers
J. G.
,
Fan
P. H.
, and
Nanda
N. C.
,
1996
, “
Accuracy of Color Doppler Velocity in the Flowfield Proximal to a Regurgitant Orifice-Implications for Color Doppler Quantification of Valvular Regurgitation
,”
Ultrasound in Medicine and Biology
, Vol.
22
, No.
5
, pp.
605
621
.
12.
Perry
G. J.
,
Anayiotos
A. S.
,
Myers
J. G.
,
Green
D. W.
,
Fan
P. H.
, and
Nanda
N. C.
,
1995
, “
Underestimation of Velocities by Color Doppler in Valvular Regurgitation
,”
Proc. ASME Summer Bio. Conf.
, Vol.
29
, pp.
177
178
.
13.
Rao, S. S., 1982, The Finite Element Method, Pergamon Press.
14.
Recusani
F.
,
Bargiggia
G. S.
,
Yogonathan
A. P.
,
Raisaro
A.
,
Valdez Cruz
L. M.
,
Sung
H. W.
,
Bertucci
C.
,
Gallati
E.
,
Moises
V. A.
,
Simpson
I. A.
,
Tronconi
L.
, and
Sahn
D. J.
,
1991
, “
A New Method for Quantification of Regurgitant Flow Rate Using CD Flow Imaging of the Flow Convergence Region Proximal to a Discreet Orifice
,”
Circulation
, Vol.
83
, pp.
594
604
.
15.
Rizzo
A. A.
,
1991
, “
Estimating Errors in FE Analyses
,”
Mechanical Engineering
, Vol.
113
, No.
5
, May, pp.
61
63
.
16.
Rodriguez
L.
,
Anconina
J.
,
Flanchskampf
F. A.
,
Weyman
A. E.
,
Levine
R. A.
, and
Thomas
J. D.
,
1992
, “
Impact of Finite Orifice Size on Proximal Flow Convergence: Implications for Doppler Quantification of Valvular Regurgitation
,”
Circ. Res.
, Vol.
70
, pp.
923
930
.
17.
Schlichting, H., 1979, Boundary-Layer Theory, McGraw-Hill, New York.
18.
Shandas
R.
,
Gharib
M.
, and
Sahn
D. J.
,
1995
, “
Nature of Flow Acceleration Into a Finite-Sized Orifice: Steady and Pulsatile Flow Studies on the Flow Convergence Region Using Simultaneous Ultrasound Doppler Flow Mapping and Laser Doppler Velocimetry
,”
J. Am. Coll. Cardiol.
, Vol.
25
, pp.
1199
1212
.
19.
Spain
M. G.
,
Smith
M. D.
,
Grayburn
P. A.
,
Harlament
E. A.
, and
DeMaria
A. M.
,
1989
, “
Quantitative Assessment of Mitral Regurgitation by Doppler Color Flow Imaging: Angiographic and Hemodynamic Correlations
,”
J. Am. Coll. Cardiol.
, Vol.
13
, pp.
585
590
.
20.
Utsunomiya
T.
,
Ogawa
T.
,
Doshi
R.
,
Patel
D.
,
Quan
M.
,
Henry
W. L.
, and
Gardin
J. M.
,
1991
, “
Doppler Color Flow Proximal Isovelocity Surface Area Method for Estimating Volume Flow Rate: Effects of Orifice Shape and Machine Factors
,”
J. Am. Coll. Cardiol.
, Vol.
17
, pp.
1103
1111
.
21.
Utsunomiya
T.
,
Doshi
R.
,
Patel
D.
,
Mehta
K.
,
Nguyen
D.
,
Henry
W. L.
, and
Gardin
J. M.
,
1993
, “
Calculation of Volume Flow Rate by the Proximal Isovelocity Surface Area Method: Simplified Approach Using CD Zero Baseline Shift
,”
J. Am. Coll. Cardiol.
, Vol.
22
, pp.
277
282
.
22.
Vandervoort
P. M.
,
Aghassi
D. S.
, and
Thomas
J. D.
,
1992
, “
Impact of Wall Filtration on the Accuracy of Quantitative CD Velocity Measurements: Numerical and In Vitro Study
,”
Advances in Bioengineering
, Vol.
22
, pp.
367
370
.
23.
Vandervoort
P. M.
,
Thoreau
D. H.
,
Rivera
J. M.
,
Levine
R. A.
,
Weyman
A. E.
, and
Thomas
J. D.
,
1993
, “
Automated Flow Rate Calculations Based on Digital Analysis of Flow Convergence Proximal to Regurgitant Orifices
,”
J. Am. Coll. Cardiol.
, Vol.
22
, pp.
535
541
.
24.
Weyman, A., 1994, Principles and Practices of Echocardiography, Lea & Febiger, Philadelphia.
25.
Womerseley, J. R., 1957, “The Mathematical Analysis of the Arterial Circulation in a State of Oscillitory Motion,” Wright Air Development Center, Technical Report WADC-TR56-614, 5-18.
26.
Yoshida
K.
,
Yoshikawa
J.
,
Akasaka
T.
,
Nishigami
K.
, and
Minagoe
S.
,
1992
, “
Value of Acceleration Flow Signals Proximal to the Leaking Orifice in Assessing the Severity of Prosthetic Mitral Valve Regurgitation
,”
J. Am. Coll. Cardiol.
, Vol.
19
, pp.
333
338
.
This content is only available via PDF.
You do not currently have access to this content.