The goal of this study was to determine how vessel compliance (wall motion) and the phase angle between pressure and flow waves (impedance phase angle) affect the wall shear rate distribution in an atherogenic bifurcation geometry under sinusoidal flow conditions. Both rigid and elastic models replicating the human abdominal aortic bifurcation were fabricated and the wall shear rate distribution in the median plane of the bifurcation was determined using the photochromic flow visualization method. In the elastic model, three phase angle conditions were simulated (+12, −17, −61 deg), and the results compared with those obtained in a similar rigid model. The study indicates a very low (magnitude close to zero) and oscillatory wall shear rate zone within 1.5 cm distal to the curvature site on the outer (lateral) wall. In this low shear rate zone, unsteadiness (pulsatility) of the flow greatly reduces the mean (time-averaged) wall shear rate level. Vessel wall motion reduces the wall shear rate amplitude (time-varying component) up to 46 percent depending on the location and phase angle in the model. The mean wall shear rate is less influenced by the wall motion, but is reduced significantly in the low shear region (within 1.5 cm distal to the curvature site on the outer wall), thus rendering the wall shear rate waveform more oscillatory and making the site appear more atherogenic. The effect of the phase angle is most noteworthy on the inner wall close to the flow divider tip where the mean and amplitude of wall shear rate are 31 and 23 percent lower, respectively, at the phase angle of −17 deg than at −61 deg. However, the characteristics of the wall shear rate distribution in the low shear rate zone on the outer wall that are believed to influence localization of atherosclerotic disease, such as the mean wall shear rate level, oscillation in the wall shear rate waveform, and the length of the low and oscillatory wall shear rate zone, are similar for the three phase angles considered. The study also showed a large spatial variation of the phase angle between the wall shear stress waveform and the circumferential stress waveform (hoop stress due to radial artery expansion in response to pressure variations) near the bifurcation (up to 70 deg). The two stresses became more out of phase in the low mean shear rate zone on the outer wall (wall shear stress wave leading hoop stress wave as much as 125 deg at the pressure-flow phase angle of −61 deg) and were significantly influenced by the impedance phase angle.

1.
Anayiotos
A. S.
,
Jones
S. A.
,
Giddens
D. P.
,
Glagov
S.
, and
Zarins
C. K.
,
1994
, “
Shear stress at a compliant model of the human carotid bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
98
106
.
2.
Bargeron
C. B.
,
Hutchins
G. M.
,
Moore
G. W.
,
Deters
O. J.
,
Mark
F. F.
, and
Friedman
M. H.
,
1986
, “
Distribution of the geometric parameters of human aortic bifurcations
,”
Arteriosclerosis
, Vol.
6
, pp.
109
113
.
3.
Caro
C. G.
,
Futz-Gerald
J. M.
, and
Schroter
R. C.
,
1969
, “
Arterial wall shear and distribution of early atheroma in man
,”
Nature
, Vol.
223
, pp.
1159
1161
.
4.
Cohen
M. I.
,
Wang
D.-M.
, and
Tarbell
J. M.
,
1995
, “
Measurements of oscillatory flow pressure gradient in an elastic artery model
,”
Biorheology
, Vol.
32
, pp.
459
471
.
5.
Duncan
D. D.
,
Bargeron
C. B.
,
Borchardt
S. E.
,
Deters
O. J.
,
Gearhart
S. A.
,
Mark
F. F.
, and
Friedman
M. H.
,
1990
, “
The effect of compliance on wall shear in casts of a human aortic bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
183
188
.
6.
Friedman
M. H.
,
Deters
O. J.
,
Mark
F. F.
,
Bargeron
C. B.
, and
Hutchins
G. M.
,
1983
, “
Arterial geometry affects hemodynamics: a potential risk factor for atherosclerosis
,”
Atherosclerosis
, Vol.
46
, pp.
225
231
.
7.
Friedman
M. H.
,
Brinkman
A. M.
,
Qin
J. J.
, and
Seed
W. A.
,
1993
, “
Relation between coronary artery geometry and the distribution of early sudanophilic lesions
,”
Atherosclerosis
, Vol.
98
, pp.
193
199
.
8.
Fry
D. L.
,
1968
, “
Acute vascular endothelial changes associated with increased blood velocity gradient
,”
Circulation Res.
, Vol.
22
, pp.
165
197
.
9.
Imura
T.
,
Yamamoto
K.
,
Kanamori
K.
,
Mikami
T.
, and
Yasuda
H.
,
1986
, “
Non-invasive ultrasonic measurements of the elastic properties of the human abdominal aorta
,”
Cardiovasc. Res.
, Vol.
20
, pp.
208
214
.
10.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
,
1985
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress
,”
Arteriosclerosis
, Vol.
5
, pp.
293
302
.
11.
Ku
D. N.
, and
Giddens
D. P.
,
1987
, “
Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation
,”
J. of Biomechanics
, Vol.
20
, pp.
407
421
.
12.
Ku
D. N.
,
Glagov
S.
,
Moore
J. E.
, and
Zarins
C. K.
,
1989
, “
Flow patterns in the abdominal aorta under simulated postpranial and exercise conditions: an experimental study
,”
J. Vasc. Surg.
, Vol.
9
, pp.
309
316
.
13.
Kuban
B. D.
, and
Friedman
M. H.
,
1995
, “
The effect of pulsatile frequency on wall shear rate in a compliant cast of a human aortic bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
, pp.
219
223
.
14.
Liepsch
D.
, and
Moravec
S.
,
1984
, “
Pulsatile flow of non-Newtonian fluid in distensible models of human arteries
,”
Biorheology
, Vol.
21
, pp.
571
586
.
15.
Lou
Z.
, and
Yang
W. J.
,
1992
, “
Biofluid dynamics of arterial bifurcations
,”
Critical Reviews in Biomedical Eng.
, Vol.
19
, pp.
455
493
.
16.
Lou
Z.
, and
Yang
W. J.
,
1993
, “
A computer simulation of the blood flow at the aortic bifurcation with flexible walls
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
306
315
.
17.
Mark
F. F.
,
Bargeron
C. B.
,
Deters
O. J.
, and
Friedman
M. H.
,
1989
, “
Variation in geometry and shear rate distribution in casts of human aortic bifurcations
,”
J. of Biomechanics
, Vol.
22
, pp.
577
582
.
18.
McDonald, D., 1974, Blood Flow in Arteries, 2nd ed., Willey & Wilkins Co., Baltimore.
19.
Merillon
J. P.
,
Fontenier
G. J.
,
Lerallut
J. F.
,
Jaffrin
M. Y.
,
Motte
G. A.
,
Genain
C. P.
, and
Gourgon
R. R.
,
1982
, “
Aortic input impedance in normal man and arterial hypertension; its modifications during changes in aortic pressure
,”
Cardiovasc. Res.
, Vol.
16
, pp.
646
656
.
20.
Milnor, W. R., 1984, Hemodynamics, 2nd ed., Willey & Wilkins Co., Baltimore.
21.
Moore
J. E.
,
Ku
D. N.
,
Zarins
C. K.
, and
Glagov
S.
,
1992
, “
Pulsatile flow visualization in the abdominal aorta under differing physiological conditions: implication for increased susceptibility to atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
391
397
.
22.
Moore
J. E.
,
Burki
E.
,
Suciu
A.
,
Zhao
S.
,
Burnier
M.
,
Brunner
H. R.
, and
Meister
J. J.
,
1994
, “
A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch
,”
Annals of Biomedical Eng.
, Vol.
22
, pp.
416
422
.
23.
Nerem
R. M.
,
1992
, “
Vascular fluid mechanics, the arterial wall and atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
274
282
.
24.
Nerem, R. M., 1995, “Atherosclerosis and the rate of wall shear stress,” in: Flow-Dependent Regulation of Vascular Function, Bevan, J. A., et al., eds., Oxford Univ. Press., New York.
25.
Ojha
M.
,
Johnston
K. W.
, and
Cobbold
R. S. C.
,
1989
, “
Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods
,”
J. Fluid Mech.
, Vol.
203
, pp.
173
197
.
26.
O’Rourke
M. F.
, and
Taylor
M. G.
,
1966
, “
Vascular impedance of the femoral bed
,”
Circ. Res.
, Vol.
18
, pp.
126
139
.
27.
O’Rourke
M. F.
, and
Taylor
M. G.
,
1967
, “
Input impedance of the systemic circulation
,”
Circ. Res.
, Vol.
20
, pp.
365
380
.
28.
Pedersen
E. M.
,
Yoganathan
A. P.
, and
Leefebvre
X. P.
,
1992
, “
Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation
,”
J. Biomechanics
, Vol.
25
, pp.
935
944
.
29.
Popovich
A. T.
, and
Hummel
R. L.
,
1967
, “
A new method for non-disturbing turbulent flow measurements very close to a wall
,”
Chemical Eng. Science
, Vol.
22
, pp.
21
25
.
30.
Rhee
K.
, and
Tarbell
J. M.
,
1994
, “
A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery
,”
J. Biomechanics
, Vol.
27
, pp.
329
338
.
31.
Wang
D. M.
, and
Tarbell
J. M.
,
1992
, “
Nonlinear analysis of flow in an elastic tube (artery): steady streaming effects
,”
J. Fluid Mech.
, Vol.
239
, pp.
341
358
.
32.
Wang
D. M.
, and
Tarbell
J. M.
,
1995
, “
Nonlinear analysis of oscillatory flow, with a nonzero mean, in an elastic tube (artery)
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
, pp.
127
135
.
33.
Weston
M. W.
,
Rhee
K.
, and
Tarbell
J. M.
,
1996
, “
Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis
,”
J. Biomechanics
, Vol.
29
, pp.
187
198
.
34.
White
K. C.
,
Kavanaugh
J. F.
,
Wang
D. M.
, and
Tarbell
J. M.
,
1994
, “
Hemodynamics and wall shear rate in the abdominal aorta of dogs: effects of vasoactive agents
,”
Circ. Res.
, Vol.
75
, pp.
637
649
.
35.
Womersley
J. R.
,
1955
, “
Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
,”
J. Physiology
, Vol.
127
, pp.
553
563
.
This content is only available via PDF.
You do not currently have access to this content.