A finite element model, comprising an assemblage of tetrakaidecahedra or truncated octahedra, is used to represent an alveolar duct unit. The dimensions of the elastin and collagen fibre bundles, and the surface tension properties of the air-liquid interfaces, are based on available published data. Changes to the computed static pressure-volume behavior with variation in alveolar dimensions and fibre volume densities are characterized using distensibility indices (K). The air-filled lung distensibility (Ka) decreased with a reduction in the alveolar airspace length dimensions and increased with a reduction of total fibre volume density. The saline-filled lung distensibility (Ks) remained constant with alveolar dimensions and increased with decreasing total fibre volume density. The degree of geometric anisotropy between the duct lumen and alveoli was computed over pressure-volume cycles. To preserve broadly isotropic behavior, parenchyma with smaller alveolar airspace length dimensions required higher concentrations of fibres located in the duct and less in the septa in comparison with parenchyma of larger airspace dimensions.

1.
Bachofen
H.
,
Schu¨rch
S.
,
Urbinelli
M.
, and
Weibel
E. R.
,
1987
, “
Relations Among Alveolar Surface Tension, Surface Area, Volume, and Recoil Pressure
,”
J. Appl. Physiol.
, Vol.
62
, pp.
1878
1887
.
2.
Carton
R. W.
,
Dianauskas
J.
,
and Clark
J. W.
,
1962
, “
Elastic Properties of Single Elastic Fibers
,”
J. Appl. Physiol.
, Vol.
17
, pp.
547
551
.
3.
Cavagna
G. A.
,
Stemmler
E. J.
, and
DuBois
A. B.
,
1967
, “
Alveolar Resistance to Atelectasis
,”
J. Appl. Physiol.
, Vol.
22
, pp.
441
452
.
4.
Colebatch
H. J. H.
,
Ng
C. K. Y.
, and
Nikov
H.
,
1979
, “
Use of an Exponential Function for Elastic Recoil
,”
J. Appl. Physiol.
, Vol.
46
, pp.
387
393
.
5.
Dale
P. J.
,
Mathews
F. L.
, and
Schroter
R. C.
,
1980
, “
Finite Element Analysis of Lung Parenchyma
,”
J. of Biomech.
, Vol.
13
, pp.
865
873
.
6.
Denny
E.
, and
Schroter
R. C.
,
1995
, “
The Micro-mechanical Behaviour of a Mammalian Lung Alveolar Duct Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
, pp.
254
261
.
7.
Eidelman
D. H.
,
Ghezzo
H.
, and
Bates
J. H. T.
,
1990
, “
Exponential Fitting of Pressure-Volume Curves: Confidence Limits and Sensitivity to Noise
,”
J. Appl. Physiol.
, Vol.
69
, pp.
1538
1541
.
8.
Fung
Y. C.
,
1988
, “
A Model of the Lung Structure and Its Validation
,”
J. Appl. Physiol.
, Vol.
64
, pp.
2132
2141
.
9.
Gibson
G. J.
,
Pride
N. B.
,
Davis
J.
, and
Schroter
R. C.
,
1979
, “
Exponential Description of the Static Pressure-Volume Curve of Normal and Diseased Lungs
,”
Am. Rev. Respir. Dis.
, Vol.
120
, pp.
799
811
.
10.
Glaister
D. H.
,
Schroter
R. C.
,
Sudlow
M. F.
, and
Milic-Emili
J.
,
1973
a, “
Bulk Elastic Properties of Excised Lungs and the Effect of a Transpulmonary Pressure Gradient
,”
Respir. Physiol.
, Vol.
17
, pp.
347
364
.
11.
Glaister
D. H.
,
Schroter
R. C.
,
Sudlow
M. F.
, and
Milic-Emili
J.
,
1973
b, “
Transpulmonary Pressure Gradient and Ventilation Distribution in Exercised Lungs
,”
Respir. Physiol.
, Vol.
17
, pp.
365
385
.
12.
Greaves
I. A.
, and
Colebatch
H. J. H.
,
1980
, “
Elastic Behaviour and Structure of Normal and Emphysematous Lungs Post Mortem
,”
Am. Review Resp. Dis.
, Vol.
121
, pp.
127
136
.
13.
Haber
P. S.
,
Colebatch
H. J. H.
,
Ng
C. K. Y.
, and
Greaves
I. A.
,
1983
, “
Alveolar Size as a Determinant of Pulmonary Distensibility in Mammalian Lungs
,”
J. Appl. Physiol.
, Vol.
54
, pp.
837
845
.
14.
Karakaplan
A. D.
,
Bieniek
M. P.
, and
Skalak
R.
,
1980
, “
A Mathematical Model of Lung Parenchyma
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
124
136
.
15.
Karlinsky
J. B.
,
Snider
G. L.
,
Franzblau
C.
,
Stone
P. J.
, and
Hoppin
F. G.
,
1976
, “
In Vitro Effects of Elastase and Collagenase on Mechanical Properties of Hamster Lungs
,”
Am. Rev. Respir. Dis.
, Vol.
113
, pp.
769
777
.
16.
Kimmel
E.
, and
Budiansky
B.
,
1990
, “
Surface Tension and the Dodecahedron Model for Lung Elasticity
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
160
167
.
17.
Kowe
R.
,
Schroter
R. C.
,
Mathews
F. L.
, and
Hitchings
D.
,
1986
, “
Analysis of Elastic and Surface Tension Effects in Lung Alveolus using Finite Element Methods
,”
J. of Biomech.
, Vol.
19
, pp.
541
549
.
18.
Kowe, R., Hitchings, D., Mathews, F. L., and Schroter, R. C., 1988, “Finite Element Model of Alveoli and Ducts,” Proc. World Congress on Medical Physics and Biomedical Engg., San Antonio, TX.
19.
Matsuda
M.
,
Fung
Y. C.
, and
Sobin
S. S.
,
1987
, “
Collagen and Elastin Fibers in Human Pulmonary Alveolar Mouths and Ducts
,”
J. Appl. Physiol.
, Vol.
63
, pp.
1185
1194
.
20.
Mercer
R. R.
,
Laco
J. M.
, and
Crapo
J. D.
,
1987
, “
Three-Dimensional Reconstruction of Alveoli in the Rat Lung for Pressure-Volume Relationships
,”
J. Appl. Physiol.
, Vol.
62
, pp.
1480
1487
.
21.
Mercer
R. R.
, and
Crapo
J. D.
,
1990
, “
Spatial Distribution of Collagen and Elastin Fibers in the Lungs
,”
J. Appl. Physiol.
, Vol.
69
, pp.
756
765
.
22.
Mercer
R. R.
,
Russell
M. L.
, and
Crapo
J. D.
,
1994
, “
Alveolar Septal Structure in Different Species
,”
J. Appl. Physiol.
, Vol.
77
, pp.
1060
1066
.
23.
Miki
H.
,
Butler
J. P.
,
Rogers
R. A.
, and
Lehr
J. L.
,
1993
, “
Geometric Hysteresis in Pulmonary Surface-to-Volume Ratio During Tidal Breathing
,”
J. Appl. Physiol.
, Vol.
75
, pp.
1630
1636
.
24.
Morrison
N. J.
,
Abboud
R. T.
,
Ramadan
F.
,
Miller
R. R.
,
Gibson
N. N.
,
Evans
K. G.
,
Nelems
B.
, and
Mu¨ller
N. L.
,
1989
, “
Comparison of Single Breath Carbon Monoxide Diffusing Capacity and Pressure-Volume Curves in Detecting Emphysema
,”
Am. Review Resp. Dis.
, Vol.
139
, pp.
1179
1187
.
25.
Nagai
A.
,
Yamawki
I.
,
Thurlbeck
W. M.
, and
Takizawa
T.
,
1989
, “
Assessment of Lung Destruction Using Routine Histologic Tissue Sections
,”
Am. Review Resp. Dis.
, Vol.
139
, pp.
313
319
.
26.
Oldmixon
E. H.
,
Butler
J. P.
, and
Hoppin
F. G.
,
1989
, “
Lengths and Topology of Alveolar Septal Borders
,”
J. Appl. Physiol.
, Vol.
65
, pp.
1930
1940
.
27.
Oldmixon
E. H.
, and
Hoppin
F. G.
,
1989
, “
Distribution of Elastin and Collagen in Canine Lung Alveolar Parenchyma
,”
J. Appl. Physiol.
, Vol.
67
, pp.
1941
1949
.
28.
Sata
M.
,
Takahashi
K.
,
Sato
S.
, and
Tomoike
H.
,
1995
, “
Structural and Functional Characteristics of Peripheral Pulmonary Parenchyma in Golden Hamsters
,”
J. Appl. Physiol.
, Vol.
78
, pp.
239
246
.
29.
Schu¨rch
S.
,
Bachofen
H.
,
Goerke
J.
, and
Possmayer
F.
,
1989
, “
A Captive Bubble Method Reproduces the in Situ Behavior of Lung Surfactant Molecules
,”
J. Appl. Physiol.
, Vol.
67
, pp.
2389
2396
.
30.
Schroter
R. C.
,
1980
, “
Quantative Comparisons of Mammalian Lung Pressure-Volume Curves
,”
Respir. Physiol.
, Vol.
42
, pp.
101
107
.
31.
Sobin
S. S.
,
Fung
Y. C.
, and
Tremer
H. M.
,
1988
, “
Collagen and Elastin Fibers in Human Pulmonary Alveolar Walls
,”
J. Appl. Physiol.
, Vol.
64
, pp.
1659
1675
.
32.
Stromberg
D. D.
, and
Wiederhelm
C. A.
,
1969
, “
Viscoelastic Description of a Collagenous Tissue in Simple Elongation
,”
J. Appl. Physiol.
, Vol.
26
, pp.
857
862
.
33.
Suzuki
S.
,
Butler
J. P.
,
Oldmixon
E. H.
, and
Hoppin
F. G.
,
1985
, “
Light Scattering by Lungs Correlates With Stereological Measurements
,”
J. Appl. Physiol.
, Vol.
58
, pp.
97
104
.
34.
Wilson
T. A.
,
1979
, “
Parenchymal Mechanics at the Alveolar Level
,”
FASEB, Federation Proc.
, Vol.
38
, pp.
7
10
.
35.
Wilson
T. A.
, and
Bachofen
H.
,
1982
, “
A Model for Mechanical Structure of the Alveolar Duct
,”
J. Appl. Physiol.
, Vol.
52
, pp.
1064
1070
.
36.
Wilson
T. A.
,
1982
, “
Surface Tension-Surface Area Curves Calculated From Pressure-Volume Loops
,”
J. Appl. Physiol.
, Vol.
53
, pp.
1512
1520
.
37.
Yager
D.
,
Feldman
H.
, and
Fung
Y. C.
,
1992
, “
Microscopic vs. Macroscopic Deformation of the Pulmonary Alveolar Duct
,”
J. Appl. Physiol.
, Vol.
72
, pp.
1348
1354
.
This content is only available via PDF.
You do not currently have access to this content.