A new model for muscle tissue heat transfer has been developed using Myrhage and Eriksson’s [23] description of a muscle tissue cylinder surrounding secondary (s) vessels as the basic heat transfer unit. This model provides a rational theory for the venous return temperature for the perfusion source term in a modified Pennes bioheat equation, and greatly simplifies the anatomical description of the microvascular architecture required in the Weinbaum-Jiji bioheat equation. An easy-to-use closed-form analytic expression has been derived for the difference between the inlet artery and venous return temperatures using a model for the countercurrent heat exchange in the individual muscle tissue cylinders. The perfusion source term calculated from this model is found to be similar in form to the Pennes’s source term except that there is a correction factor or efficiency coefficient multiplying the Pennes term, which rigorously accounts for the thermal equilibration of the returning vein. This coefficient is a function of the vascular cross-sectional geometry of the muscle tissue cylinder, but independent of the Peclet number in contrast to the recent results in Brinck and Werner [8]. The value of this coefficient varies between 0.6 and 0.7 for most muscle tissues. In part II of this study a theory will be presented for determining the local arterial supply temperature at the inlet to the muscle tissue cylinder.

1.
Anderson
G. T.
, and
Valvano
J. W.
,
1994
, “
A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion in the Kidney Cortex
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
71
78
.
2.
Baish
J. W.
,
1994
, “
Formulation of a Statistical Model of Heat Transfer in Perfused Tissue
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
521
527
.
3.
Baish
J. W.
,
1990
, “
Heat Transfer by Countercurrent Blood Vessels in the Presence of an Arbitrary Temperature Gradient
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
207
213
.
4.
Baish
J. W.
,
Ayyaswamy
P. S.
, and
Foster
K. R.
,
1986
, “
Heat Transport Mechanism in Vascular Tissues: a Model Comparison
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
108
, pp.
324
331
.
5.
Baish
J. W.
,
Ayyaswamy
P. S.
, and
Foster
K. R.
,
1986
, “
Small-Scale Temperature Fluctuations in Perfused Tissue During Local Hyperthermia
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
108
, pp.
246
250
.
6.
Bjornberg
J.
,
Grande
P. O.
,
Maspers
M.
, and
Mellander
S.
,
1988
, “
Site of Autoregulatory Reactions in the Vascular Bed of Cat Skeletal Muscle as Determined With a New Technique for Segmental Vascular Resistance Recordings
,”
Acta Physiol. Scand.
, Vol.
133
, pp.
199
210
.
7.
Brinck
H.
, and
Werner
J.
,
1994
, “
Estimation of the Thermal Effect of Blood Flow in a Branching Countercurrent Network Using a Three-Dimensional Vascular Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
324
330
.
8.
Brinck
H.
, and
Werner
J.
,
1994
, “
Efficiency Function: Improvement of Classical Bioheat Approach
,”
Journal of Applied Physiology
, Vol.
77
(
4
), pp.
1617
1622
.
9.
Charny
C. K.
,
1992
, “
Mathematical Models of Bioheat Transfer
,” in:
Advances in Heat Transfer
, Vol.
22
, Y. I. Cho, ed., Academic Press, Boston, pp.
19
155
.
10.
Charny
C. K.
,
Weinbaum
S.
, and
Levin
R. L.
,
1990
, “
An Evaluation of the Weinbaum-Jiji Bioheat Equation for Normal and Hyperthermic Conditions
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
80
87
.
11.
Chato
J.
,
1980
, “
Heat Transfer to Blood Vessels
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
110
118
.
12.
Chen
M. M.
, and
Holmes
K. K.
,
1980
, “
Microvascular Contributions to Tissue Heat Transfer
,”
Annals of the NY Acad. of Science
, Vol.
335
, pp.
137
150
.
13.
Crezee
J.
,
Mooibroek
J.
,
Lagendijk
J. J. W.
, and
Van Leneuwen
G. M. J.
,
1994
, “
The Theoretical and Experimental Evaluation of the Heat Balance in Perfused Tissue
,”
Phys. Med. Biol.
, Vol.
39
, pp.
813
832
.
14.
Crezee
J.
,
Mooibroek
J.
,
Bos
C. K.
, and
Lagendijk
J. J. W.
,
1991
, “
Interstitial Heating: Experiments in Artificially Perfused Bovine Tongues
,”
Phys. Med. Biol.
, Vol.
36
, pp.
823
833
.
15.
Crezee
J.
, and
Lagendijk
J. J. W.
,
1990
, “
Experimental Verification of Bioheat Transfer Theories: Measurement of Temperature Profiles around Large Artificial Vessels in Perfused Tissue
,”
Phys. Med. Biol.
, Vol.
35
(
7
), pp.
905
923
.
16.
Dagan
Z.
,
Weinbaum
S.
, and
Pfeffer
R.
,
1982
, “
An Infinite-Series Solution for the Creeping Motion Through an Orifice of Finite Length
,”
J. Fluid Mech.
, Vol.
115
, pp.
505
523
.
17.
Eriksson
E.
, and
Myrhage
R.
,
1972
, “
Microvascular Dimensions and Blood Flow in Skeletal Muscle
,”
Acta Physiol. Scand.
, Vol.
86
, pp.
211
222
.
18.
Jiji
L. M.
,
Weinbaum
S.
, and
Lemons
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer. Part II—Model Formulation and Solution
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
331
341
.
19.
Lemons
D. E.
,
Chien
S.
,
Crawshaw
L. I.
,
Weinbaum
S.
, and
Jiji
L. M.
,
1987
, “
The Significance of Vessel Size and Type in Vascular Heat Transfer
,”
Am. J. Physiol.
, Vol.
253
, pp.
R128–R135
R128–R135
.
20.
Pennes
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Applied Physiology
, Vol.
1
, pp.
93
122
.
21.
Maspers
M.
,
Bjornberg
J.
,
Grande
J. P. O.
, and
Mellander
O.
,
1989
, “
Sympathetic αadrenergic Control of Larger-Bore Arterial Vessels, Arterioles and Veins, and of Capillary Pressure and Fluid Exchange in Whole Organ Cat Skeletal Muscle
,”
Acta Physiol. Scand.
, Vol.
138
, pp.
509
521
.
22.
Myrhage
R.
,
1977
, “
Microvascular Supply of Skeletal Muscle Fibers: a Microangiographic, Histochemical and Intravital Microscopic Study of Hind Limb Muscles in the Rat, Rabbit and Cat
,”
Acta Orthop. Scand.
, Vol.
168
, pp.
1
46
.
23.
Myrhage
R.
, and
Eriksson
E.
,
1984
, “
Arrangement of the Vascular Bed in Different Types of Skeletal Muscles
,”
Prog. Appl. Microcirc.
, Vol.
5
, pp.
1
14
.
24.
Myrhage
R.
, and
Eriksson
E.
,
1980
, “
Vascular Arrangement in Hind Limb Muscles of the Cat
,”
J. Anatomy
, Vol.
131
(
1
), pp.
1
17
.
25.
Myrhage
R.
, and
Hudlicka
O.
,
1976
, “
The Microvascular Bed and Capillary Surface Area in Rat Extensor Hallucis Proprius Muscle (EHP)
,”
Microvascular Research
, Vol.
11
, pp.
315
323
.
26.
Roemer, R. B., Moros, E. G., and Hynynen, K., 1989, “A Comparison of Bioheat Transfer and Effective Conductivity Equation Predictions to Experimental Hyperthermia Data,” Adv. Bioeng., ASME WAM, pp. 11–15.
27.
Valvano
J. W.
,
Nho
S.
, and
Anderson
G. T.
,
1994
, “
Analysis of the Weinbaum-Jiji Model of Blood Flow in the Canine Kidney Cortex for Self-Heated Thermistors
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
201
207
.
28.
Weinbaum
S.
,
Jiji
L. M.
, and
Lemons
D. E.
,
1992
, “
The Bleed Off Perfusion Term in the Weinbaum-Jiji Bioheat Equation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
539
542
.
29.
Weinbaum
S.
, and
Lemons
D. E.
,
1992
, “
Heat Transfer in Living Tissue: the Search for a Blood-Tissue Energy Equation and the Local Thermal Microvascular Control Mechanism
,”
BMES Bull.
, Vol.
16
(
3
), pp.
38
43
.
30.
Weinbaum
S.
, and
Jiji
L. M.
,
1989
, “
The Matching of Thermal Fields Surrounding Countercurrent Microvessels and the Closure Approximation in the Weinbaum-Jiji Bioheat Equation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
271
275
.
31.
Weinbaum
S.
, and
Jiji
L. M.
,
1987
, “
Discussion of Papers by Wissler and Baish et al. Concerning the Weinbaum-Jiji Bioheat Equation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
, pp.
234
237
.
32.
Weinbaum
S.
, and
Jiji
L. M.
,
1985
, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
, pp.
131
139
.
33.
Weinbaum
S.
,
Jiji
L. M.
, and
Lemons
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer— Part I: Anatomical Foundation and Model Conceptualization
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
321
330
.
34.
Wissler
E. H.
,
1988
, “
Comments on the New Bioheat Equation Proposed by Weinbaum and Jiji
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
, pp.
226
233
.
35.
Wissler
E. H.
,
1987
, “
Comments on Weinbaum and Jiji’s discussion of their proposed bioheat equation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
, pp.
355
356
.
36.
Wu
Y. L.
,
Weinbaum
S.
,
Jiji
L. M.
, and
Lemons
D. E.
,
1993
, “
A New Analytic Technique for 3-D Heat Transfer From a Cylinder With Two or More Axially Interacting Eccentrically Embedded Vessels With Application to Counter-current Blood Flow
,”
Int. J. Heat Mass Transfer
, Vol.
36
, pp.
1073
1083
.
37.
Xu
L. X.
,
Chen
M. M.
,
Holmes
K. R.
, and
Arkin
H.
,
1991
, “
The theoretical evaluation of the Pennes, the Chen-Holmes and the Weinbaum-Jiji bioheat transfer models in the pig renal cortex
,”
ASME HTD
-Vol.
189
, pp.
15
22
.
38.
Zhu
L.
,
Lemons
D. E.
, and
Weinbaum
S.
,
1996
, “
Microvascular Thermal Equilibration in Rat Cremaster Muscle
,”
Annals of Biomedical Engineering
, Vol.
24
, pp.
109
123
.
39.
Zhu
L.
,
Lemons
D. E.
, and
Weinbaum
S.
,
1995
, “
A New Approach for Prediction the Enhancement in the Effective Conductivity of Perfused Muscle Tissue Due to Hyperthermia
,”
Annals of Biomedical Engineering
, Vol.
23
, pp.
1
12
.
40.
Zhu, L., Xu, L. X., and Weinbaum, S., “A New Fundamental Bioheat Equation for Muscle Tissue, Part II: Temperature of SAV Vessels,’ in preparation.
41.
Zhu
M.
,
Weinbaum
S.
, and
Jiji
L. M.
,
1990
, “
Heat Exchange Between Unequal Countercurrent Vessels Asymmetrically Embedded in a Cylinder With Surface Convection
,”
Int. J. Heat Mass Transfer
, Vol.
33
, pp.
2275
2284
.
This content is only available via PDF.
You do not currently have access to this content.