In this study, a three-dimensional finite element model of the human lower cervical spine (C4-C6) was constructed. The mathematical model was based on close-up CT scans from a young human cadaver. Cortical shell, cancellous core, endplates, and posterior elements including the lateral masses, pedicle, lamina, and transverse and spinous processes, and the intervertebral disks, were simulated. Using the material properties from literature, the 10,371-element model was exercised under an axial compressive mode of loading. The finite element model response agreed with literature. As a logical step, a parametric study was conducted by evaluating the biomechanical response secondary to changes in the elastic moduli of the intervertebral disk and the endplates. In the stress analysis, the minimum principal compressive stress was used for the cancellous core of the vertebral body and von Mises stress was used for the endplate component. The model output indicated that an increase in the elastic modulii of the disk resulted in an increase in the endplate stresses at all the three spinal levels. In addition, the inferior endplate of the middle vertebral body responded with the highest mean compressive stress followed by its superior counterpart. Furthermore, the middle vertebral body produced the highest compressive stresses compared to its counterparts. These findings appear to correlate with experimental results as well as common clinical experience wherein cervical fractures are induced due to external compressive forces. As a first step, this model will lead to more advanced simulations as additional data become available.

1.
Adams
M. A.
, “
Mechanical Testing of the Spine: An Appraisal of Methodology, Results, and Conclusions
,”
Spine
, Vol.
20
, No.
19
,
1995
, pp.
2151
2156
.
2.
Bozic
K. J.
,
Keyak
J. H.
,
Skinner
H. B.
,
Bueff
H. U.
, and
Bradford
D. S.
, “
Three-Dimensional Finite Element Modeling of a Cervical Vertebra: an Investigation of Burst Fracture Mechanism
,”
J. Spinal Disorders
, Vol.
7
, No.
2
,
1994
, pp.
102
110
.
3.
Buckwalter
J. A.
, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
, Vol.
20
, No.
11
,
1995
, pp.
1307
1314
.
4.
Clausen, J. D., Goel, V. K., Traynelis, V. C., and Wilder, D. G., “Cervical Spine Biomechanical Investigation Using an Experimentally Validated FE Model of the C5-C6 Motion Segment,” Proc. of Orthopedic Research Society, Atlanta, GA, Feb. 21–24, 1996.
5.
Cusick, J. F., Yoganandan, N., Pintar, F. A., and Gardon, M., “Cervical Spine Injuries From High Velocity Forces: A Pathoanatomical and Radiological Study,” J. Spinal Disords., 1996, in press.
6.
Denman, J. A., “Development and Validation of a Three-Dimensional Nonlinear Finite Element Model of the C4-C6 Cervical Spine Unit,” M.S. Thesis, Marquette University, Milwaukee, WI, 1995.
7.
Evans, F. G., Mechanical Properties of Bone, Charles C. Thomas, Springfield, IL, 1973.
8.
Ghosh, P., Biology of the Intervertebral Disc, CRC Press, Inc., Boca Raton, FL, 1988.
9.
Goel
V. K.
,
Gilbertson
L. G.
, “
Applications of the Finite Element Method to Thoracolumbar Spinal Research—Past, Present, and Future
,”
Spine
, Vol.
20
, No.
15
,
1995
, pp.
1719
1727
.
10.
Goel
V. K.
,
Kong
W. Z.
,
Han
J. S.
,
Weinstein
J. N.
, and
Gilbertson
L. G.
, “
A Combined Finite Element and Optimization Investigation of Lumbar Spine Mechanics With and Without Muscles
,”
Spine
, Vol.
18
,
1993
, pp.
1531
1541
.
11.
Goel
V. K.
,
Lim
T.-H.
,
Gilbertson
L. G.
, and
Weinstein
J. N.
, “
Clinically Relevant Finite Element Models of a Ligamentous Lumbar Motion Segment
,”
Seminars in Spine Surgery
, Vol.
5
,
1993
, pp.
29
41
.
12.
Goel
V. K.
,
Park
H.
, and
Kong
W.
, “
Investigation of Vibration Characteristics of the Ligamentous Lumbar Spine Using the Finite Element Approach
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
,
1994
, pp.
377
383
.
13.
Kleinberger, M., “Application of Finite Element Techniques to the Study of Cervical Spine Mechanics,” Proc. 37th Stapp Car Crash Conf., San Antonio, Texas, Society of Automotive Engineers, Inc., 1993, pp. 261–272.
14.
McElhaney, J. H., Doherty, B. J., Paver, J. G., Myers, B. S., and Gray, L., “Combined Bending and Axial Loading Responses of the Human Cervical Spine,” Proc. 32nd Stapp Car Crash Conf., Atlanta, GA, Society of Automotive Engineers, Inc., 1988, pp. 21–28.
15.
Myers, B. S., McElhaney, J. H., Richardson, W. J., Nightingale, R. W., and Doherty, B. J., “The Influence of End Condition on Human Cervical Spine Injury Mechanism,” Proc. 35th Stapp Car Crash Conf., San Diego, CA, Society of Automotive Engineers, Inc., 1991, pp. 391–399.
16.
Natarajan
R. N.
,
Ke
J. H.
, and
Andersson
B. J.
, “
A Model to Study the Disc Degeneration Process
,”
Spine
Vol.
19
, No.
3
,
1994
, pp.
259
265
.
17.
Pintar
F. A.
,
Yoganandan
N.
,
Sances
A.
,
Reinartz
J.
,
Harris
G.
, and
Larson
S. J.
, “
Kinematic and Anatomical Analysis of the Human Cervical Spinal Column Under Axial Loading
,”
SAE Transactions
, Vol.
98
, No.
6
,
1990
, pp.
1766
1789
.
18.
Saito
T.
,
Yamamuro
T.
,
Shikata
J.
,
Oka
M.
, and
Tsutsumi
S.
, “
Analysis and Prevention of Spinal Column Deformity Following Cervical Laminectomy, Pathogenetic Analysis of Post Laminectomy Deformities
,”
Spine
, Vol.
16
,
1991
, pp.
494
502
.
19.
Sances, A., Jr., Thomas, D. J., Ewing, C. L., Larson, S. J., and Unterharnscheidt, F., eds., Mechanisms of Head and Spine Trauma, Aloray, Goshen, NY, 1986.
20.
Sharma
M.
,
Langrana
N. A.
, and
Rodriguez
J.
, “
Role of Ligaments and Facets in Lumbar Spinal Stability
,”
Spine
, Vol.
20
, No.
8
,
1995
, pp.
887
900
.
21.
Shea
M.
,
Edwards
W. T.
,
White
A. A.
, and
Hayes
W. C.
, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
, Vol.
24
, No.
2
,
1991
, pp.
95
107
.
22.
Shirazi-Adl
S. A.
, “
Finite-Element Evaluation of Contact Loads on Facets of an L2-L3 Lumbar Segment in Complex Loads
,”
Spine
, Vol.
16
, No.
5
,
1991
, pp.
533
541
.
23.
Suwito
W.
,
Keller
T. S.
,
Basu
P. K.
,
Wesiberger
A. M.
,
Strauss
A. M.
, and
Spengler
D. M.
, “
Geometric and Material Property Study of the Human Lumbar Spine Using the Finite Element Method
,”
J. Spinal Disords
, Vol.
5
, No.
1
,
1992
, pp.
50
59
.
24.
Teo
E. C.
,
Paul
J. P.
, and
Evans
J. H.
, “
Finite Element Stress Analysis of a Cadaver Second Cervical Vertebra
,”
Med. and Biol. Eng. and Comput.
, Vol.
32
,
1994
, pp.
236
238
.
25.
Voo
L.
,
Denman
J. A.
,
Yoganandan
N.
,
Pintar
F.
, and
Cusick
J. F.
, “
A 3-D FE Model of Cervical Spine With CT-Based Geometry
,”
Adv. Bioeng.
, Vol.
29
,
1995
, pp.
323
324
.
26.
Yamada, H., Strength of Biological Materials, Robert E. Krieger, Huntington, NY, 1973.
27.
Yoganandan, N., Maiman, D. J., Cusick, J. F., Pintar, F. A., Sances, A., Jr., Walsh, P. R., and Larson, S. J., “Human Head-Neck Biomechanics Under Axial Tension,” Med. Eng. Physics, 1996, in press.
28.
Yoganandan
N.
,
Myklebust
J. B.
,
Ray
G.
,
Sances
A.
, “
Mathematical and Finite Element Analysis of Spinal Injuries
,”
CRC Review Biomed. Eng.
, Vol.
15
, No.
1
,
1987
, pp.
29
93
.
29.
Yoganandan
N.
,
Pintar
F. A.
,
Arnold
P.
,
Reinartz
J.
,
Cusick
J. F.
,
Maiman
D. J.
, and
Sances
A.
, “
Continuous Motion Analysis of the Head-Neck Complex Under Impact
,”
J. Spinal Disor.
, Vol.
7
, No.
3
,
1994
, pp.
420
428
.
30.
Yoganandan
N.
,
Pintar
F. A.
,
Butler
J.
,
Reinartz
J.
,
Sances
A.
, and
Larson
S. J.
, “
Dynamic Response of Human Cervical Spine Ligaments
,”
Spine
, Vol.
14
, No.
10
,
1989
, pp.
1102
1110
.
31.
Yoganandan, N., Pintar, F. A., Myklebust, J. B., Maiman, D. J., Sances, A., Jr., and Larson, S. J., “Initiation of Injury in Cervical Spine Segments,” Proc. 13th Ann. Mtg. of Cervical Spine Research Society, Boston, MA, 1985.
32.
Yoganandan
N.
,
Pintar
F. A.
,
Wilson
C. R.
,
Sances
A.
, “
In Vitro Biomechanical Study of Female Geriatric Cervical Vertebral Bodies
,”
J. Biomed. Eng.
, Vol.
12
, No.
2
,
1990
, pp.
97
101
.
33.
Yoganandan
N.
,
Sances
A.
,
Maiman
D. J.
,
Myklebust
J. B.
,
Pech
P.
, and
Larson
S. J.
, “
Experimental Spinal Injuries With Vertical Impact
,”
Spine
, Vol.
11
, No.
9
,
1986
, pp.
855
860
.
34.
Yoganandan, N., Voo, L., Pintar, F. A., Kumaresan, S., Cusick, J. F., and Sances, A., Jr., “Finite Element Analysis of the Cervical Spine,” Injury Prevention Through Biomechanics, CDC, Detroit, MI, 1995, pp. 149–155.
This content is only available via PDF.
You do not currently have access to this content.