The bidirectional cavopulmonary anastomosis (BCPA or bidirectional Glenn) is an operation to treat congenital heart diseases of the right heart by diverting the systemic venous return from the superior vena cava to both lungs. The main goal is to provide the correct perfusion to both lungs avoiding an excessive increase in systemic venous pressure. One of the factors which can affect the clinical outcome of the surgically reconstructed circulation is the amount of pulsatile blood flow coming from the main pulmonary artery. The purpose of this work is to analyse the influence of this factor on the BCPA hemodynamics. A 3-D finite element model of the BCPA has been developed to reproduce the flow of the surgically reconstructed district. Geometry and hemodynamic data have been taken from angiocardiogram and catheterization reports, respectively. On the basis of the developed 3-D model, four simulations have been performed with increasing pulsatile blood flow rate from the main pulmonary artery. The results show that hemodynamics in the pulmonary arteries are greatly influenced by the amount of flow through the native main pulmonary artery and that the flow from the superior vena cava allows to have a similar distribution of the blood to both lungs, with a little predilection for the left side, in agreement with clinical postoperative data.

1.
Alvarado
O.
,
Narayanswami
S.
,
McKay
R.
, and
Boyd
I. M.
,
1993
, “
Cavopulmonary Connection in Repair of Atrioventricular Septal Defect With Small Right Ventricle
,”
Ann. Thorac. Surg.
, Vol.
55
, pp.
729
736
.
2.
Fontan
F.
, and
Baudet
E.
,
1971
, “
Surgical Repair of Tricuspid Atresia
,”
Thorax
, Vol.
26
, pp.
240
248
.
3.
Gross
G. J.
,
Jonas
R. A.
,
Castaneda
A. R.
,
Hanley
F. L.
,
Mayer
J. E.
, and
Bridges
N. D.
,
1994
, “
Maturational and Hemodynamic Factors Predictive of Increased Cyanosis After Bidirectional Cavopulmonary Anastomosis
,”
Am. J. Cardiol.
, Vol.
74
, pp.
705
709
.
4.
Haller
J. A.
,
Adkins
J. C.
,
Worthington
M.
,
Ravenhorst
J.
,
1966
, “
Experimental Studies on Permanent Bypass of the Right Heart
,”
Surgery
, Vol.
59
, pp.
1128
1132
.
5.
Kobayashi
J.
,
Matsuda
H.
,
Nakano
S.
,
Shimazaki
Y.
,
Ikawa
S.
,
Mitsuno
M.
,
Takahashi
Y.
,
Kawashima
Y.
,
Arisawa
J.
, and
Matsushita
T.
,
1991
, “
Hemodynamic Effects of Bidirectional Cavopulmonary Shunt With Pulsatile Pulmonary Flow
,”
Circulation
, Vol.
84
[supp. III], pp.
219
225
.
6.
Nerem
R. M.
, and
Seed
W. A.
,
1972
, “
An In Vivo Study of Aortic Flow Disturbances
,”
Cardiovasc. Res.
, Vol.
6
, pp.
1
14
.
7.
Oddou, C. Flaud, P., and Geiger, D., 1978, “Model of Non-Linear Visco-Elastic Wall Rbeology Applied to Arterial Dynamics,” The Arterial System (Bauer, R. D., and Busse, R., eds.) Springer, Berlin, 1978, pp. 101–108.
8.
Rebergen
S. A.
,
Ottenkamp
J.
,
Doornbos
J.
,
Van der Wall
E. E.
,
Chin
J. G. J.
, and
de Ross
A.
,
1993
, “
Postoperative Pulmonary Flow Dynamics After Fontan Surgery: Assessment With Nuclear Magnetic Resonance Velocity Mapping
,”
J. Am. Coll. Cardiol.
, Vol.
21
, pp.
123
131
.
9.
Reuben
S. R.
,
Swadling
J. P.
, and
Lee
G. J.
,
1970
, “
Velocity Profiles in the Main Pulmonary Artery of Dogs and Man, Measured with a Thin-Film Resistance Anemometer
,”
Circulation Res.
, Vol.
27
, pp.
995
1001
.
10.
Rowlatt
U. F.
,
Rimoldi
H. J.
, and
Lev
M.
,
1963
, “
The Quantitative Anatomy of the Normal Child’s Heart
,”
Pediatr. Clin. North Am.
, Vol.
10
, pp.
499
588
.
11.
Sloth
E.
,
Houlind
K. C.
,
Oyre
S.
,
Kim
W. Y.
,
Pedersen
E. M.
,
Jo̸rgensen
H. S.
, and
Hasenkam
J. M.
,
1994
, “
Three-Dimensional Visualization of Velocity Profiles in the Human Main Pulmonary Artery With Magnetic Resonance Phase-Velocity Mapping
,”
Am. Heart J.
, Vol.
128
, pp.
1130
1138
.
12.
Sung
H.
, and
Yoganathan
A. P.
,
1990
, “
Axial Flow Velocity Patterns in a Normal Human Pulmonary Artery Model: Pulsatile In Vitro Studies
,”
J. Biomech.
, Vol.
23
, pp.
201
214
.
This content is only available via PDF.
You do not currently have access to this content.