Mitral and tricuspid regurgitation create turbulent jets within the atria. Clinically, for the purpose of estimating regurgitant severity, jet size is assumed to be proportional to peak jet flow rate and regurgitant volume. Unfortunately, the relationship is more complex because the determinants of jet size include interactions between jet pulsatility, jet momentum, atrial width, and the velocity of ambient atrial counterftows. These effects on fluorescent jet penetration were measured using an in vitro simulation. Both steady and pulsatile jets were driven into an opposing counterflow velocity field peak jet length (Ljp) measurements made as a function of (1) peak orifice velocity (Ujp), (2) the time required for the jet to accelerate from zero to peak velocity and begin to decelerate (Tjp), (3) jet orifice diameter (Dj), (4) counterflow velocity (Uc), and (5) counterflow tube diameter (Dc). A compact mathematical description was developed using dimensional analysis. Results showed that peak jet length was a function of the counterflow tube diameter, the ratio of peak jet to counterflow momentum, (Mjp/Mc) = (Ujp2Dj2)/(Uc2Dc2), and a previously undescribed jet pulsatility parameter, the pulsatility index (PI), PI = Dc2/(TjpUjpDj). For the same jet orifice flow conditions, jet penetration decreased as chamber diameter decreased, as the jet PI increased, and as the momentum ratio decreased. These interactions provide insight into why regurgitant jet size is not always a good estimate of regurgitant severity.

1.
Beltaos, S., and Rajaratnam, N., 1973, “Circular Turbulent Jet in an Opposing Infinite Stream,” 1st Canadian Hydraulics Conference, May, pp. 220–236.
2.
Blevins, R. D., 1984, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold, New York, pp. 229–278.
3.
Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A., 1978, The Mechanics of the Circulation, Oxford University Press, NY, pp. 278–279.
4.
Cape
E. G.
,
Yoganathan
A. P.
,
Weyman
A. E.
,
Levine
R. A.
,
1991
, “
Adjacent Solid Boundaries Alter the Size of Regurgitant Jets on Color Doppler Flow Maps
,”
J. Am. Coll. Cardiol.
, Vol.
17
, pp.
1094
1102
.
5.
Cape
E. G.
,
Yoganathan
A. P.
, and
Levine
R. A.
,
1993
, “
Increased Heart Rate Can Cause an Underestimation of Regurgitant Jet Size by Doppler Color Flow Mapping
,”
J. Am. Coll. Cardiol.
, Vol.
21
, pp.
1029
1037
.
6.
Chen
C.
,
Thomas
J. D.
,
Anconina
J.
, et al.,
1991
, “
Impact of Impinging Wall Jets on Color Doppler Quantification of Mitral Regurgitation
,”
Circulation
, Vol.
83
, pp.
2101
2110
.
7.
Gal
R. A.
,
Shalev
Y.
, and
Schmidt
D. H.
,
1990
, “
Mitral Regurgitation; Parameters That Affect the Correlation Between Doppler Echocardiography and Contrast Ventriculography
.”
Int. J. Cardiol.
, Vol.
28
, pp.
87
93
.
8.
Grimes
R. Y.
,
Nyarko
S. J.
,
Pulido
G. A.
, et al.,
1995
, “
Atrial Inflow Can Alter Regurgitant Jet Size: In Vitro Studies
,”
Ultrasound in Medicine and Biology
, Vol.
21
, pp.
459
469
.
9.
Helmcke
F.
,
Nanda
N. C.
,
Hsiung
M. C.
,
Soto
B.
,
Adey
C. K.
,
Goyal
R. G.
, and
Gatewood
R. P.
,
1987
, “
Color Doppler Assessment of Mitral Regurgitation With Orthogonal Planes
,”
Circulation
, Vol.
75
, pp.
175
183
.
10.
Klein
A. L.
,
Stewart
W. J.
, and
Bartlett
J.
, et al.,
1992
, “
Effects of Mitral Regurgitation on Pulmonary Venous Flow and Left Atrial Pressure: An Intraoperative Transesophageal Echocardiographic Study
,”
J. Am. Coll. Cardiol.
, Vol.
20
, pp.
1345
52
.
11.
Miyatake
K.
,
Okamoto
M.
,
Kinoshita
N.
,
Ohta
M.
,
Kozuka
T.
,
Sakakibara
H.
, and
Nimura
Y.
,
1982
, “
Evaluation of Tricuspid Regurgitation by Pulsed Doppler and Two-Dimensional Echocardiography
,”
Circulation
, Vol.
66
, pp.
777
784
.
12.
Miyatake
K.
,
Izumi
S.
,
Okamoto
M.
,
Kinoshita
N.
,
Asonuma
H.
,
Nakagawa
H.
,
Yamamoto
K.
,
Takamiya
M.
,
Sakakibara
H.
, and
Nimura
Y.
,
1986
, “
Semi-quantitative Grading of Severity of Mitral Regurgitation by Real Time Two-Dimensional Doppler Flow Imaging Technique
,”
J. Am. Coll. Cardiol
, Vol.
7
, pp.
82
8
.
13.
Mohr-Kahaly
S.
,
Erbel
R.
,
Zenker
G.
, and
Bohlander
M.
, et al.,
1989
, “
Flow Patterns of Mitral Regurgitation Due to Different Etiologies: Analysis of Color-Coded Doppler Echocardiography
,”
Int J. Cardiol
, Vol.
24
, pp.
137
149
.
14.
Morgan
W. D.
,
Brinkworth
B. J.
, and
Evans
G. V.
,
1976
, “
Upstream Penetration of an Enclosed Counterflowing Jet
,”
Indust Eng. Chem. Fund.
, Vol.
15
, pp.
125
127
.
15.
Nidorf
S. M.
,
Picard
M. H.
, and
Triulzi
M. O.
, et al.,
1992
, “
New Perspectives in the Assessment of Cardiac Chamber Dimensions During Development and Childhood
,”
J. Am. Coll Cardiol
, Vol.
19
, pp.
983
8
.
16.
Nichhols, W. M., and O’Rourke, M. F., 1990, McDonald’s Blood Flow in Arteries, 3rd Edition, Lea & Febiger, PA, pp. 35–39.
17.
Ren
J. F.
, et al.,
1983
, “
Two-Dimensional Echocardiographic Determination of Left Atrial Emptying Volume; A Noninvasive Index in Quantifying the Degree of Non-Rheumatic Mitral Regurgitation
,”
J. Am. Coll. Cardiol.
, Vol.
2
, pp.
279
285
.
18.
Sanfllippo
A. J.
, et al.,
1990
, “
Atrial Enlargement as a Consequence of Atrial Fibrillation: A Prospective Echocardiographic Study
,”
Circulation
, Vol.
82
, pp.
792
9
.
19.
Schwammenthal
E.
,
Chen
C.
, and
Benning
F.
, et al.,
1994
, “
Dynamics of Mitral Regurgitant Flow and Orifice Area. Physiologic Application of the Proximal Flow Convergence Method; Clinical Data and Experimental Testing
,”
Circulation
, Vol.
90
, pp.
307
22
.
20.
Sekundov, A. N., 1969, “The Propagation of a Turbulent Jet in an Opposing Stream,” Turbulent Jets of Air, Plasma, and Real Gas, G. N. Abramovich, ed., Moscow Aviation Institute, translated from Russian, Consultants Bureau, New York, pp. 99–109.
21.
Simonson
J. S.
, and
Schiller
N. B.
,
1989
, “
Descent of the Base of the Left Ventricle; An Echocardiographic Index of Left Ventricular Function
,”
J. Am. Soc. Echo
, Vol.
2
, pp.
23
55
.
22.
Spain
M. G.
,
Smith
M. D.
, and
Grayburn
P.
, et al.,
1989
, “
Quantitative Assessment of Mitral Regurgitation by Doppler Color Imaging: Angiographic and Hemodynamic Correlations
,”
J. Am. Coll Cardiol.
, Vol.
13
, pp.
589
590
.
23.
Stevenson
J. G.
,
1989
, “
Two-Dimensional Color Doppler Estimation of the Severity of Atrioventricular Valve Regurgitation: Important Effects of Instrument Gain Setting, Pulse Repetition Frequency, and Carrier Frequency
,”
J. Am. Soc. Echo
, Vol.
2
, pp.
1
10
.
24.
Stewart
W. J.
, et al.,
1992
, “
Evaluation of Mitral Leaflet Motion by Echocardiography and Jet Direction by Color Doppler Flow Mapping to Determine the Mechanism of Mitral Regurgitation
,”
J. Am. Coll. Cardiol.
, Vol.
20
, pp.
1353
1361
.
25.
Thomas
J. D.
,
Liu
C.
,
Flachskampf
F. A.
,
O’Shea
J. P.
,
Davidoff
R.
,
Weyman
A. E.
,
1990
, “
Quantification of Jet Flow by Momentum Analysis—An In Vitro Color Doppler Flow Study
,”
Circulation
, Vol.
81
, pp.
247
259
.
26.
Tribouilloy
C.
,
Wei
F. S.
, and
Quere
J. P.
, et al.,
1992
, “
Assessment of Mitral Regurgitation by Measuring Regurgitant Jet Width at Its Origin With Transesophageal Doppler Color Flow Imaging
,”
Circulation
, Vol.
85
, pp.
1248
53
.
27.
Utsunonmiya
T.
,
Ogawa
T.
,
King
S. W.
, et al.,
1990
, “
Pitfalls in the Display of Doppler Color Jet Areas: Combined Variability Due to Doppler Angle, Frame Rate, and Scanning Direction
.”
Echocardiography
, Vol.
7
, pp.
739
45
.
28.
Vandervoot
P. M.
,
Rivera
J. M.
, and
Mele
D.
, et al.,
1993
, “
Application of Color Doppler Flow Mapping to Calculate Effective Regurgitant Orifice Area. An In Vitro Study and Initial Clinical Observations
,”
Circulation
, Vol.
88
, pp.
1150
1156
.
29.
Weyman, A. E., 1994, “Principles and Practices of Echocardiography,” Lea & Febiger, PA, pp. 234–248, 428–441, 833–836.
30.
Woo, Y., 1984, “In Vitro Velocity and Shear Stress Measurements in the Vicinity of Prosthetic Heart Valves,” PhD thesis, Georgia Institute of Technology.
31.
Yoshida
K.
,
Yoshikawa
J.
,
Yamaura
Y.
,
Hozumi
T.
,
Akasaka
T.
, and
Fukaya
T.
,
1990
, “
Assessment of Mitral Regurgitation by Biplane Transesophageal Color Doppler Flow Mapping
.”
Circulation
, Vol.
82
, pp.
1121
1126
.
This content is only available via PDF.
You do not currently have access to this content.