The influence of passive vasomotion on the pressure drop-flow (ΔP-Q) characteristics of a partially compliant stenosis was studied in an in vitro model of the coronary circulation. Twelve stenosis models of different severities (50 to 90 percent area reduction) and degrees of flexible wall (0 to 1/2 of the wall circumference) were inserted into thin-walled latex tubing and pressure and flow data were collected during simulated cardiac cycles. In general, the pressure drop increased with increasing fraction of flexible wall for a given flow rate and stenosis severity. The magnitude of this effect was directly dependent upon the underlying stenosis severity. The diastolic ΔP-Q relationship of severe, compliant models exhibited features of partial collapse with an increase in pressure drop at a decreasing flow rate. It is concluded that passive vasomotion of a normal wall segment at an eccentric stenosis in response to periodic changes in intraluminal pressure causes dimensional changes in the residual lumen area which can strongly affect the hemodynamic characteristics of the stenosis during the cardiac cycle. This mechanism may have important implications for the onset of plaque fracture and the prediction of the functional significance of a coronary stenosis based on quantitative angiogram analysis.

1.
Aoki
T.
and
Ku
D. N.
, “
Collapse of Diseased Arteries With Eccentric Cross Section
,”
J. Biomechanics
,
26
133
142
,
1993
.
2.
Binns, R. L. and Ku, D. N., “Effect of Stenosis on Wall Motion. A Possible Mechanism of Stroke and Transient Ischemic Attack.” Arteriosclerosis, 9:842–847, 1989.
3.
Born, G. V. R. and Richardson, P. D., “Mechanical Properties of Human Atherosclerotic Lesions,” in S. Glagov, W. P. Newman, and S. A. Schaffa, editors, Pathobiology of the Human Atherosclerotic Plaque, New York, 1990. Springer Verlag, pp. 413–423.
4.
Bove
A. A.
,
Santamore
W. P.
, and
Carey
R. A.
, “
Reduced Myocardial Blood Flow Resulting From Dynamic Changes in Coronary Artery Stenosis
,”
Int J Cardiol
,
4
301
313
,
1983
.
5.
Brown, B. G., Bolson, E. L., and Dodge, H. T., “Dynamic Mechanisms in Human Coronary Stenosis,” Circulation, 70:917–922, 1984.
6.
Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A., The Mechanics of the Circulation, chapter 12, Oxford University Press, New York, 1978, pp. 278–279.
7.
Cerny
L. C.
,
Cook
F. B.
, and
Walker
C. C.
, “
Rheology of Blood
,”
Am J Physiol
,
202
1188
1194
,
1962
.
8.
Chilian
W. M.
and
Marcus
M. L.
, “
Effects of Coronary and Extravascular Pressure on Intramyocardial and Epicardial Blood Velocity
,”
Am J Physiol
,
248
H170–H178
H170–H178
,
1985
.
9.
Cox, R. H., “Mechanical Aspects of Large Coronary Arteries,” Santamore, W. P., and Bove, A. A., editors, Coronary Artery Disease, Baltimore, Munich, 1982, Urban & Schwarzenberg, pp. 19–39.
10.
Dubill
P. M.
and
Young
D. F.
, “
Steady Flow Through Models of Compliant Stenoses
,”
Proc. 39th ACEMB
,
28
:
298
298
,
1986
.
11.
Folkow, B., and Neil, E., Circulation, Oxford University Press, New York, 1971.
12.
Freudenberg
H.
, and
Lichtlen
P. R.
, “
The Normal Wall Segment in Coronary Stenoses—A Post-Mortem Study
,”
Z Kardiologie
,
70
863
869
,
1981
.
13.
Gould, K. L., “Pressure-Flow Characteristics of Coronary Stenoses in Unsedated Dogs at Rest and During Coronary Vasodilation,” Circ Res, 43:242–253, 1978.
14.
Gould, K. L., Kelley, K. O., and Bolson, E. L., “Experimental Validation of Quantitative Coronary Arteriography for Determining Pressure-Flow Characteristics of Coronary Stenosis,” Circulation, 66:930–937, 1982.
15.
Gow, B. S. and Hadfield, C. D., “The Elasticity of Canine and Human Coronary Arteries With Reference to Postmortem Changes,” Circ Res, 45:588–594, 1979.
16.
Higgins
D. R.
,
Santamore
W. P.
,
Bove
A. A.
, and
Nemir
P.
, “
Mechanism for Dynamic Changes in Stenotic Severity
,”
Am J Physiol
,
249
H293–H299
H293–H299
,
1985
.
17.
Hoffman, J. I. E., “Maximal Coronary Flow and the Concept of Coronary Vascular Reserve,” Circulation, 70:153–159, 1984.
18.
Hoffman, J. I. E. and Spaan, J. A. E., “Pressure-Flow Relations in Coronary Circulation,” Phys Rev, 70:331–390, 1990.
19.
Judd, R. M., and Mates, R. E., “Pressure-Flow Relationships in Partially Occluded Flexible Tubes,” Proc. Sympos. on Biofluid Mechanics and Biorheology, New York, 1989, ASME, pp. 581–590.
20.
Kirkeeide, R. L., “Mechanics of Blood Flow Through Normal and Stenotic Coronary Arteries,” PhD thesis, Iowa State University, 1978. Microfilm 7903988.
21.
Kirkeeide, R. L., Gould, K. L., and Kelley, K. O., “Fluid Dynamic Behaviour of Severe Coronary Stenoses: Classic Rigid Stenosis or Collapsible Starling Resistor?” R. E. Mates, R. M. Nerem, and P. D. Stein, eds., Mechanics of the Coronary Circulation, New York, 1983, The American Society of Mechanical Engineers, pp. 91–94.
22.
Ku
D. N.
,
Zeigler
M. N.
, and
Downing
J. M.
, “
One-Dimensional Steady Inviscid Flow Through a Stenotic Collapsible Tube
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
112
444
450
,
1990
.
23.
Lee
R. T.
,
Grodzinsky
A. L.
,
Frank
E. H.
,
Kamm
R. D.
, and
Schoen
F. J.
, “
Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques
,”
Circulation
,
83
1764
1770
,
1991
.
24.
Lee
R. T.
,
Loree
H. M.
,
Cheng
G. C.
,
Lieberman
E. H.
,
Jaramillo
N.
, and
Schoen
F. J.
, “
Computational Structural Analysis Based on Intravascular Ultrasound Imaging Before In Vitro Angioplasty: Prediction of Plaque Fracture Locations
,”
J Am Coll Cardiol
,
21
777
782
,
1993
.
25.
Logan
S. E.
, “
On the Fluid Mechanics of Human Coronary Artery Stenosis
,”
IEEE Trans Biomed Eng
,
BME-22
327
334
,
1975
.
26.
Loree
H. M.
,
Kamm
R. D.
,
Stringfellow
R. G.
, and
Lee
R. T.
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ Res
,
71
850
858
,
1992
.
27.
Lorell, B. H. and Braunwald, E., “Pericardial Disease,” Heart Disease, Philadelphia, 1992. W. B. Saunders, pp. 1465–1516.
28.
Mates
R. E.
,
Gupta
R. L.
,
Bell
A. C.
, and
Klocke
F. J.
, “
Fluid Dynamics of Coronary Artery Stenosis
,”
Circ Res
,
42
152
162
,
1978
.
29.
Papageorgiou
G. L.
and
Jones
N. B.
, “
Physical Modeling of the Arterial Wall. Part 1: Testing of Tubes of Various Materials
,”
J Biomed Eng
,
9
153
156
,
1987
.
30.
Richardson, P. D., Davies, M. J., and Born, G. V. R., “Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques,” Lancet, 2:941–944, 1989.
31.
Saner
H. E.
,
Gobel
F. L.
,
Salomonowitz
E.
,
Erlien
D. A.
, and
Edwards
J. E.
, “
The Disease-Free Wall in Coronary Atherosclerosis: Its Relation to Degree of Obstruction
,”
J Am Coll Cardiol
,
6
1096
1099
,
1985
.
32.
Santamore, W. P., Bove, A. A., and Carey, R. A., “Hemodynamics of a Stenosis in a Compliant Artery,” Cardiology, 69:1–10, 1982.
33.
Schwartz
J. S.
, “
Effect of Distal Coronary Pressure on Rigid and Compliant Coronary Stenoses
,”
Am J Physiol
,
245
H1054–H1060
H1054–H1060
,
1983
.
34.
Schwartz
J. S.
,
Carlyle
P. F.
, and
Cohn
J. N.
, “
Effect of Dilatation of the Distal Coronary Bed on Flow and Resistance in Severely Stenotic Arteries in Dog
,”
Am J Cardiol
,
43
219
224
,
1979
.
35.
Schwartz, J. S., Carlyle, P. F., and Cohn, J. N., “Effect of Coronary Arterial Pressure on Coronary Stenosis Resistance,” Circulation, 61:70–76, 1980.
36.
Seeley
B. D.
and
Young
D. F.
, “
Effect of Geometry on Pressure Losses Across Models of Arterial Stenoses
,”
J Biomechanics
,
9
439
448
,
1976
.
37.
Selzer, R. H., Siebes, M., Hagerty, C., Azen, S. P., Lee, P. L., Blankenhom, D. H., and Shircore, A., “Effects of Cardiac Phase on Diameter Measurements from Coronary Cineangiograms,” Computers in Cardiology 1988, Los Alamitos, CA, 1989. IEEE Computer Society, pp. 363–366.
38.
Shapiro
A. H.
, “
Steady Flow in Collapsible Tubes
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
9
126
147
,
1977
.
39.
Siebes
M.
,
D’Argenio
D. Z.
, and
Selzer
R. H.
, “
Computer Assessment of Hemodynamic Severity of Coronary Artery Stenosis From Angiograms
,”
Comp Meth Progr Biomed
,
21
143
152
,
1985
.
40.
Siebes
M.
,
Tjajahdi
I.
,
Gottwik
M.
, and
Schlepper
M.
, “
Influence of Ellipitcal and Eccentric Area Reduction on the Pressure Drop Across Stenoses
,”
Z. Kardiologie
,
73
59
59
,
1984
.
41.
Smalling
R. W.
,
Kelley
K.
,
Kirkeeide
R. L.
, and
Fisher
D. J.
, “
Regional Myocardial Function is Not Affected by Severe Coronary Depressurization Provided Coronary Blood Flow is Maintained
,”
J Am Coll Cardiol
,
5
948
955
,
1985
.
42.
Stergiopulos, N., Moore, Jr., J. E., Stra¨ssle, A., Ku, D. N., and Meister, J.-J., “Steady Flow Tests and Demonstration of Collapse on Models of Compliant Axisymmetric Stenoses,” ASME 1993 Advances in Bioengineering, BED-26:455–458, 1993.
43.
Van Huis, G. A., Sipkema, P., and Westerhof, N., “Instantaneous and Steady-State Pressure Flow Relations of the Coronary System in the Canine Beating Heart,” Cardiovasc Res, 19:121–131, 1985.
44.
Vatner
S. F.
,
Pasipoularides
A.
, and
Mirsky
I.
, “
Measurement of Arterial Pressure-Dimension Relationships in Conscious Animals
,”
Ann Biomed Eng
,
12
521
534
,
1984
.
45.
Vlodaver
Z.
and
Edwards
J. W.
, “
Pathology of Coronary Atherosclerosis
,”
Prog Cardiovasc Dis
,
14
256
274
,
1971
.
46.
Waller, B. F., “The Eccentric Coronary Atherosclerotic Plaque: Morphologic Observations and Clinical Relevance,” Clin Cardiol, 12:14–20, 1989.
47.
Wong, W., Kirkeeide, R. L., and Gould, K. L., “Computer Applications in Angiography,” Collins S. M. and Skorton D. J., editors. Cardiac Imaging And Image Processing, New York, 1986. McGraw-Hill, pp. 206–238.
48.
Yasue
H.
,
Takizawa
A.
,
Nagao
M.
,
Nishida
S.
,
Horie
M.
,
Kubota
J.
, and
Fujii
H.
, “
Pathogenesis of Angina Pectoris in Patients With One-Vessel Disease: Possible Role of Dynamic Coronary Obstruction
,”
Am Heart J
,
112
263
272
,
1986
.
49.
Young
D. F.
, “
Fluid Mechanics of Arterial Stenoses
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
101
157
175
,
1979
.
50.
Young
D. F.
and
Tsai
F. Y.
, “
Flow Characteristics in Models of Arterial Stenoses—I. Steady Flow
,”
J Biomechanics
,
6
395
410
,
1973
.
This content is only available via PDF.
You do not currently have access to this content.