Membrane inflation tests were performed on fresh, intact human corneas using a fiber optic displacement probe to measure the apical displacements. Finite element models of each test were used to identify the material properties for four different constitutive laws commonly used to model corneal refractive surgery. Finite element models of radial keratotomy using the different best-fit constitutive laws were then compared. The results suggest that the nonlinearity in the response of the cornea is material rather than geometric, and that material nonlinearity is important for modeling refractive surgery. It was also found that linear transverse isotropy is incapable of representing the anisotropy that has been experimentally measured by others, and that a hyperelastic law is not suitable for modeling the stiffening response of the cornea.

1.
Battaglioli
J. L.
, and
Kamm
R. D.
,
1984
, “
Measurements of the Compressive Properties of Scleral Tissue
,”
Invest. Ophthalmol. Vis. Sci.
, Vol.
25
, pp.
59
65
.
2.
Boresi, A. P., and Chong, K. P., 1987, Elasticity in Engineering Mechanics, Elsevier, New York, pp. 250–255.
3.
Bryant
M. R.
,
Velinsky
S. A.
,
Plesha
M. E.
, and
Clarke
G. P.
,
1987
, “
Computer-Aided Surgical Design in Refractive Keratotomy
,”
CLAO Journal
, Vol.
13
, pp.
238
242
.
4.
Bryant
M. R.
, and
Velinsky
S. A.
,
1991
, “
Design of Keratorefractive Surgical Procedures: Radial Keratotomy
,”
ASME Journal Of Mechanical Design
, Vol.
113
, pp.
150
157
.
5.
Chang, Sophia, Structural Research and Analysis Corp., personal communication, March 1994.
6.
Cook, R. D., 1981, Concepts and Applications of Finite Element Analysis, 2nd ed., Wiley, New York.
7.
COSMOS/M Advanced Modules User Guide, 1993, Part 1 (Volume 4), Version 1.70. Structural Research and Analysis Corporation, May.
8.
Duffey
R. J.
,
Tchah
H.
, and
Lindstrom
R. L.
,
1989
, “
Human Cadaver Corneal Thinning for Experimental Refractive Surgery
,”
Refract. Corneal. Surg.
, Vol.
5
, pp.
41
42
.
9.
Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical Optimization, Academic Press, Orlando FL.
10.
Han, P., ed., 1992, Tensile Testing, ASM International, Materials Park, OH, p. 142–143.
11.
Hanna
K. D.
,
Jouve
F.
,
Bercovier
M. H.
, and
Waring
G. O.
,
1988
, “
Computer Simulation of Lamellar Keratectomy and Laser Myopic Keratomileusis
,”
Refrac, Corneal Surg.
, Vol.
4
, pp.
222
231
.
12.
Hanna
K. D.
,
Jouve
F. E.
,
Waring
G. O.
, and
Ciarlet
P. G.
,
1989
a, “
Computer Simulation of Arcuate and Radial Incisions Involving the Corneoscleral Limbus
,”
Eye
, Vol.
3
, pp.
227
239
.
13.
Hanna
K. D.
,
Jouve
F. E.
, and
Waring
G. O.
,
1989
b, “
Preliminary Computer Simulation of the Effects of Radial Keratotomy
,”
Arch. Ophthalmol
, Vol.
107
, pp.
911
918
.
14.
Hart, W. M., 1992, “Intraocular Pressure,” Adler’s Physiology of the Eye, Hart, W. M., ed., Mosby-Year Book, St. Louis, MO, pp. 263.
15.
Hoeltzel
D. A.
,
Altman
P.
,
Buzard
K.
, and
Choe
K.
,
1992
, “
Strip Extensiometry for Comparison of the Mechanical Response of Bovine, Rabbit, and Human Corneas
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
202
215
.
16.
Hjortdal
J. O.
, and
Koch-Jensen
P.
,
1992
, “
In Situ Mechanical Behavior of the Human Cornea as Evaluated by Simultaneous Measurements of Corneal Strain, Corneal Surface Contour, and Corneal Thickness
,”
Invest. Ophthalmol, Vis. Sci.
, Vol.
33
, pp.
895
895
.
17.
Huang
T.
,
Bisarnsin
T.
,
Schachar
R. A.
, and
Black
T. D.
,
1988
, “
Corneal Curvature Change Due to Structural Alteration by Radial Keratotomy
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
, pp.
249
253
.
18.
Jue
B.
, and
Maurice
D. M.
,
1986
, “
The Mechanical Properties of the Rabbit and Human Cornea
,”
Journal of Biomechanics
, Vol.
19
, pp.
847
853
.
19.
Pinsky
P. M.
, and
Datye
D. V.
,
1991
, “
A Microstructurally-Based Finite Element Model of the Incised Human Cornea
,”
Journal of Biomechanics
, Vol.
24
, pp.
907
922
.
20.
Pinsky
P. M.
, and
Datye
D. V.
,
1994
, “
A Microstructurally-Based Mechanical Model of the Human Cornea With Application to Keratotomy
,”
Invest. Ophthalmol. Vis. Sci.
, Vol.
35
(Suppl), pp.
1296
1296
.
21.
Sjontoft
E.
, and
Edmund
C.
,
1987
, “
In Vivo Determination of Young’s Modulus of the Cornea
,”
Bulletin of Mathematical Biology
, Vol.
49
, pp.
217
232
.
22.
Vito
R. P.
,
Shin
T. J.
, and
McCarey
B. E.
,
1989
, “
A Mechanical Model of the Cornea: The Effects of Physiological and Surgical Factors on Radial Keratotomy Surgery
,”
Refract. Corneal Surg.
, Vol.
5
, pp.
82
88
.
23.
Waring
G. O.
,
Lynn
M. J.
,
Culbertson
W.
,
Laibson
P. R.
,
Lindstrom
R. D.
,
McDonald
M. B.
,
Myers
W. D.
,
Obstrbaum
S. A.
,
Rowsey
J. J.
, and
Schanzlin
D. J.
,
PERK Study Group
,
1987
, “
Three-Year Results of the Prospective Evaluation of Radial Keratotomy (PERK) Study
,”
Ophthalmology
, Vol.
94
, pp.
1339
1354
.
24.
Woo
S. L. Y.
,
Kobayashi
A. S.
,
Schlegel
W. A.
, and
Lawrence
C.
,
1972
, “
Non-Linear Properties of Intact Cornea and Sclera
,”
Exp. Eye Res.
, Vol.
14
, pp.
29
39
.
25.
Wray
W. O.
,
Best
E. D.
, and
Cheng
L. Y.
,
1994
, “
A Mechanical Model for Radial Keratotomy: Towards a Predictive Capability
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
56
61
.
This content is only available via PDF.
You do not currently have access to this content.