A three-dimensional finite element method for nonlinear finite elasticity is presented using prolate spheroidal coordinates. For a thick-walled ellipsoidal model of passive anisotropic left ventricle, a high-order (cubic Hermite) mesh with 3 elements gave accurate continuous stresses and strains, with a 69 percent savings in degrees of freedom (dof) versus a 70-element standard low-order model. A custom mixed-order model offered 55 percent savings in dof and 39 percent savings in solution time compared with the low-order model. A nonsymmetric 3D model of the passive canine LV was solved using 16 high-order elements. Continuous nonhomogeneous stresses and strains were obtained within 1 hour on a laboratory workstation, with an estimated solution time of less than 4 hours to model end-systole. This method represents the first practical opportunity to solve large-scale anatomically detailed models for cardiac stress analysis.

1.
Costa, K. D., Hunter, P. J., Rogers, J. M., Guccione, J. M., Waldman, L. K., and McCulloch, A. D., “A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium: Part I—Cylindrical and Spherical Polar Coordinates,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 1995, published in this issue, pp.
2.
Braunwald, E., “Assessment of Cardiac Function,” Heart Disease: A Textbook of Cardiovascular Medicine, W. B. Saunders Co, Braunwald, E., eds., Philadelphia, 1988, pp. 449–470.
3.
Streeter
D. D.
, and
Hanna
W. T.
, “
Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium; I. Cavity and Wall Geometry
,”
Circ Res
, Vol.
33
,
1973
, pp.
639
655
.
4.
Streeter
D. D.
, and
Hanna
W. T.
, “
Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium: II. Fiber Angle and Sarcomere Length
,”
Circ Res
, Vol.
33
,
1973
, pp.
656
664
.
5.
Huisman
R. M.
,
Sipkema
P.
,
Westerhof
N.
, and
Elzinga
G.
, “
Comparison of Models Used to Calculate Left Ventricular Wall Force
,”
Med Biol Eng Comput
, Vol.
18
,
1980
, pp.
133
144
.
6.
Yin
F. C. P.
, “
Ventricular Wall Stress
,”
Circ Res
, Vol.
49
,
1981
, pp.
829
842
.
7.
Hunter, P. J., McCulloch, A. D., Nielsen, P. M. F., and Smaill, B. H., “A Finite Element Model of Passive Ventricular Mechanics, Computational Methods in Bioengineering, ASME, Spilker, R. L., and Simon, B. R., eds., Chicago, 1988, pp. 387–397.
8.
Guccione, J. M., and McCulloch, A. D., “Finite Element Modeling of Ventricular Mechanics,” Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function, Springer-Verlag, Glass, L., Hunter, P. J., and McCulloch, A. D., eds., New York, 1991, pp. 121–144.
9.
Bovendeerd
P. H. M.
,
Arts
T.
,
Huyghe
J. M.
,
van Campen
D. H.
, and
Reneman
R. S.
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J. Biomech
, Vol.
25
,
1992
, pp.
1129
1140
.
10.
Nielsen
P. M. F.
,
Le Grice
I. J.
,
Smaill
B. H.
, and
Hunter
P. J.
, “
Mathematical Model of Geometry and Fibrous Structure of the Heart
,”
Am J Physiol
, Vol.
260
,
1991
, pp.
H1365–H1378
H1365–H1378
.
11.
Gray
R. A.
,
Jalife
J.
,
Panfilov
A.
,
Baxter
W. T.
,
Cabo
C.
,
Davidenko
J. M.
, and
Pertsov
A. M.
, “
Nonstationary Vortexlike Reentrant Activity as a Mechanism of Polymorphic Ventricular Tachycardia in the Isolated Rabbit Heart
,”
Circulation
, Vol.
91
,
1995
, pp.
2454
2469
.
12.
Guccione
J. M.
,
McCulloch
A. D.
, and
Waldman
L. K.
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
,
1991
, pp.
42
55
.
13.
Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1972.
14.
“NAG Fortran Library, Mark 15,” 1991.
15.
Omens
J. H.
,
May
K. D.
, and
McCulloch
A. D.
, “
Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle
,”
Am J Physiol
, Vol.
261
,
1991
, pp.
H918–H928
H918–H928
.
16.
Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, New York, 1977.
17.
McCulloch
A. D.
,
Waldman
L. K.
,
Rogers
J.
, and
Guccione
J.
, “
Large-Scale Finite Element Analysis of the Beating Heart
,”
Crit Rev Biomed Eng
, Vol.
20
,
1992
, pp.
427
449
.
18.
Grimm
A. F.
,
Lin
H. L.
, and
Grimm
B. R.
, “
Left Ventricular Free Wall and Intraventricular Pressure-Sarcomere Length Distributions
,”
Am J Physiol
, Vol.
239
,
1980
, pp.
H101–H107
H101–H107
.
19.
Omens
J. H.
, and
Fung
Y. C.
, “
Residual Strain in Rat Left Ventricle
,”
Circ Res
, Vol.
66
,
1990
, pp.
37
45
.
20.
Rodriguez
E. K.
,
Omens
J. H.
,
Waldman
L. K.
, and
McCulloch
A. D.
, “
Effect of Residual Stress on Transmural Sarcomere Length Distribution in Rat Left Ventricle
,”
Am J Physiol
, Vol.
264
,
1993
, pp.
H1048–H1056
H1048–H1056
.
21.
Yoran
C.
,
Covell
J. W.
, and
Ross
J.
, “
Structural Basis for the Ascending Limb of Left Ventricular Function
,”
Circ Res
, Vol.
32
,
1973
, pp.
297
303
.
22.
Rodriguez
E. K.
,
Hunter
W. C.
,
Royce
M. J.
,
Leppo
M. K.
,
Douglas
A. S.
, and
Weisman
H. F.
, “
A Method to Reconstruct Myocardial Sarcomere Lengths and Orientations at Transmural Sites in Beating Canine Hearts
,”
Am J Physiol
, Vol.
263
,
1992
, pp.
H293–H306
H293–H306
.
23.
Gould
P.
,
Ghista
D.
,
Brombolich
L.
, and
Mirsky
I.
, “
In Vivo Stresses in the Human Left Ventricular Wall: Analysis Accounting for the Irregular 3-Dimensional Geometry and Comparison with Idealised Geometry Analyses
,”
J Biomech
, Vol.
5
,
1972
, pp.
521
539
.
24.
Pao
Y. C.
,
Robb
R. A.
, and
Ritman
E. L.
, “
Plane-Strain Finite-Element Analysis of Reconstructed Diastolic Left Ventricular Cross Section
,”
Ann Biomed Eng
, Vol.
4
,
1976
, pp.
232
249
.
25.
McCulloch
A. D.
,
Smaill
B. H.
, and
Hunter
P. J.
, “
Regional Left Ventricular Epicardial Deformation in the Passive Dog Heart
,”
Circ Res
, Vol.
64
,
1989
, pp.
721
733
.
26.
Villarreal
F. J.
, and
Lew
W. Y. W.
, “
Finite Strains in Anterior and Posterior Wall of Canine Left Ventricle
,”
Am J Physiol
, Vol.
259
,
1990
, pp.
H1409–H1418
H1409–H1418
.
27.
Huisman
R. M.
,
Elzinga
G.
,
Westerhof
N.
, and
Sipkema
P.
, “
Measurement of Left Ventricular Wall Stress
,”
Cardiovasc Res
, Vol.
14
,
1980
, pp.
142
153
.
28.
Garrido
L.
,
Wedeen
V. J.
,
Kwong
K. K.
,
Spencer
U. M.
, and
Kantor
H. L.
, “
Anisotropy of Water Diffusion in the Myocardium of the Rat
,”
Circ Res
, Vol.
74
,
1994
, pp.
789
793
.
29.
Young
A. A.
, and
Axel
L.
, “
Three-Dimensional Motion and Deformation of the Heart Wall—A Model-Based Approach
,”
Radiology
, Vol.
185
,
1992
, pp.
241
247
.
30.
Azhari
H.
,
Weiss
J. ’L.
,
Rogers
W. J.
,
Siu
C. O.
,
Zerhouni
E. A.
, and
Shapiro
E. P.
, “
Non-Invasive Quantification of Principal Strains in Normal Canine Hearts Using Tagged MRI Images in 3D
,”
Am J Physiol
, Vol.
264
,
1993
, pp.
H205–H216
H205–H216
.
31.
Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications of Finite Element Analysis, Wiley, New York, 1989.
32.
MacNeal, R. H., “Higher Order vs Lower Order Elements; Economics and Accuracy,” Finite Element Methods in the Commercial Environment, Robinson and Associates, Robinson, J., eds., Wimbome, 1978, pp. 202–215.
33.
Horowitz
A.
,
Sheinman
I.
, and
Lanir
Y.
, “
Nonlinear Incompressible Finite Element for Simulating Loading of Cardiac Tissue—Part II: Three Dimensional Formulation for Thick Ventricular Wall Segments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
,
1988
, pp.
62
68
.
34.
Huyghe
J. M.
,
van Campen
D. H.
,
Arts
T.
, and
Heethaar
R. M.
, “
A Two-Phase Finite Element Model of the Diastolic Left Ventricle
,”
J Biomech
, Vol.
24
,
1991
, pp.
527
538
.
35.
Huyghe
J. M.
,
Arts
T.
,
van Campen
D. H.
, and
Reneman
R. S.
, “
Porous Medium Finite Element Model of the Beating Left Ventricle
,”
Am J Physiol
, Vol.
262
,
1992
, pp.
H1256–H1267
H1256–H1267
.
36.
Guccione
J. M.
,
Waldman
L. K.
, and
McCulloch
A. D.
, “
Mechanics of Active Contraction in Cardiac Muscle: Part II—Cylindrical Models of the Systolic Left Ventricle
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
,
1993
, pp.
82
90
.
This content is only available via PDF.
You do not currently have access to this content.