This study illustrates how the highly nonlinear elastic behavior of artery wall material can cause unusual structural characteristics that do not occur with a linear-elastic material. An example mathematical model of an end-to-end anastomosis successfully predicts the experimentally observed area of elevated elastic compliance, called the “Para-anastomotic Hypercompliant Zone” (PHZ). The elastic hypercompliance is shown to occur because the anastomosis locally restricts the arterial diameter, thus forcing the adjacent material to remain in a lower strain, and correspondingly a lower stiffness, part of its non-linear stress-strain curve. Elevated elastic compliance can be avoided by locally matching both the arterial diameter and the elastic compliance within the physiological pressure range.

1.
Kardos
J. L.
,
Mehta
B. S.
,
Apostolou
S. F.
,
Thies
C.
, and
Clark
R. E.
,
1974
, “
Design, Fabrication and Testing of Prosthetic Blood Vessels
,”
Biomaterials, Medical Devices, and Artificial Organs
, Vol.
2
, pp.
387
396
.
2.
Clark
R. E.
,
Apostolou
S.
, and
Kardos
J. L.
,
1976
, “
Mismatch of Mechanical Properties as a Cause of Arterial Prosthesis Thrombosis
,”
Surgical Forum
, Vol.
27
, p.
208
208
.
3.
Lyman
D. J.
,
Fazzio
F. J.
,
Voorhees
H.
, and
Robinson
G.
,
1978
, “
Compliance as a Factor Affecting the Patency of a Copolyurethane Vascular Graft
,”
Journal of Biomedical Materials Research
, Vol.
12
, pp.
337
345
.
4.
Siefert
K. B.
,
Albo
D.
,
Knowlton
H.
, and
Lyman
D. J.
,
1979
, “
Effect of Elasticity of Prosthetic Wall on Patency of Small Diameter Arterial Prostheses
,”
Surgical Forum
, Vol.
30
, pp.
206
208
.
5.
Abbott
W. M.
,
Megerman
J.
,
Hasson
J. E.
,
L’Italien
G.
, and
Warnock
D. F.
,
1987
, “
Effect of Compliance Mismatch on Vascular Graft Patency
,”
Journal of Vascular Surgery
, Vol.
5
, No.
2
, pp.
376
382
.
6.
Kidson
I. G.
, and
Abbott
W. M.
,
1978
, “
Low Compliance and Arterial Graft Occlusion
,”
Circulation
, Vol.
58
, pp.
1
4
.
7.
Baird
R. N.
, and
Abbott
W. M.
,
1976
, “
Pulsatile Flow in Arterial Grafts
,”
Lancet
, Vol.
11
, pp.
948
950
.
8.
Kinley
C. D.
, and
Marble
A. E.
,
1980
, “
Compliance: A Continuing Problem With Vascular Grafts
,”
Journal of Cardiovascular Surgery
, Vol.
21
, pp.
163
170
.
9.
Walden
R.
,
L’ltalien
G. J.
,
Megerman
J.
, and
Abbott
W. M.
,
1980
, “
Matched Elastic Properties and Successful Arterial Grafting
,”
Archives of Surgery
, Vol.
115
, pp.
1166
1169
.
10.
Leung
O. Y.
,
Glagov
S. G.
, and
Mathews
M. B.
,
1975
, “
Cyclic Stretching Stimulates Synthesis of Components by Arterial Smooth Muscle Cells in vitro
,”
Science
, Vol.
191
, pp.
475
477
.
11.
Sottiurai
V. S.
,
Kollros
P.
,
Glagov
S.
,
Zarins
C. K.
, and
Mathews
M. B.
,
1983
, “
Morphologic Alteration of Cultured Arterial Smooth Muscle Cells by Cyclic Stretching
,”
Journal of Surgical Research
, Vol.
35
, pp.
490
497
.
12.
Fry
D. L.
,
Mahley
R. W.
, and
Oh
S. Y.
,
1981
, “
Effect of Arterial Stretch on Transmural Albumin and Evan’s Blue Dye Transport
,”
American Journal of Physiology
, Vol.
240
, pp.
H645–H649
H645–H649
.
13.
Hasson
J. E.
,
Megerman
J.
, and
Abbott
W. M.
,
1985
, “
Increased Compliance Near Vascular Anastomoses
,”
Journal of Vascular Surgery
, Vol.
2
, pp.
419
423
.
14.
Bell, J. F., The Experimental Foundations of Solid Mechanics, Springer-Verlag, Berlin, 1984, Art.2.14: “Experiments on the Elasticity and Cohesion of the Principal Tissues of the Human Body, Wertheim (1846-1847).”
15.
Bergel
D. H.
,
1961
, “
The Static Elastic Properties of the Arterial Wall
,”
Journal of Physiology
, Vol.
156
, pp.
445
457
.
16.
Hasson
J. E.
,
Megerman
J.
, and
Abbott
W. M.
,
1986
, “
Suture Technique and Para-Anastomatic Compliance
,”
Journal of Vascular Surgery
, Vol.
2
, pp.
591
598
.
17.
Fung
Y. C.
,
Fronek
K.
, and
Patitucci
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
American Journal of Physiology
, Vol.
237
, No.
5
, pp.
H620–H631
H620–H631
.
18.
Liu
S. Q.
, and
Fung
Y. C.
,
1988
, “
Zero-Stress States of Arteries
,”
Journal of Biomedical Engineering
, Vol.
110
, No.
1
, pp.
82
84
.
19.
Young, W. C., 1989, Roark’s Formulas for Stress and Strain, 6th ed., McGraw-Hill, New York.
20.
Holzer, S. M., 1985, Computer Analysis of Structures, Elsevier, New York.
21.
Vaishnav
R. N.
,
Young
J. T.
,
Janicki
J. S.
, and
Patel
D. J.
,
1972
, “
Nonlinear Anisotropic Elastic Properties of the Canine Aorta
,”
Biophysical Journal
, Vol.
12
, pp.
1008
1027
.
This content is only available via PDF.
You do not currently have access to this content.