Damage accumulation in living tissues occurs when the rate of damage formation is greater than the rate of damage repair. For very large increases in the loading rate of bones, this can result in “stress fractures” due to the growth and coalescence of fatigue related microdamage. At lower increases of loading rates, the damage accumulation process is halted because there is time for adaptive bone-remodeling to occur in response to the new load. However, it is not known if there is a relationship between microdamage and bone remodeling per se. One hypothesis for the control of bone remodeling is that osteocytes sense strains and mediate osteoblastic and osteoclastic activity. The purpose of this study was to investigate whether damage generates strains which may trigger bone remodeling. If this were true, then accumulative damage would cause adaptive bone remodeling. This study applies the methods of finite element analysis to determine the effect of observed damage mechanisms on the proposed sensors of remodeling in Haversian bone. Individual lamellae are modeled and osteocyte-lacunae are included in a generalized plane strain geometric representation. It is predicted that microdamage alters the local deformation behavior around lacunae, and that the changes increase as microdamage accumulates. Hence, if damage accumulates in a bone, it could be sensed as a change in strain at a microstructural level. The results give theoretical support to the experimental studies that have shown a correlation between microdamage and the initiation of resorption as a first step in bone remodeling.

1.
Ascenzi
A.
, and
Bonucci
E.
,
1976
, “
Mechanical Similarities Between Alternate Osteons and Cross-Ply Laminates
,”
J. Biomechanics
, Vol.
9
, pp.
65
71
.
2.
Benaissa
R.
,
Uhthoff
H. K.
, and
Mercier
P.
,
1989
, “
Repair of Trabecular Fatigue Fractures. Cadaver studies of the Upper Femur
,”
Acta Orthopedica Scandinavica
, Vol.
60
, pp.
585
589
.
3.
Burr
D. B.
,
Martin
R. B.
,
Schaffler
M. B.
, and
Radin
E. L.
,
1985
, “
Bone Remodelling in Response to In Vivo Fatigue Microdamage
,”
J. Biomechanics
, Vol.
18
, pp.
189
200
.
4.
Burr
D. B.
, and
Stafford
T.
,
1990
, “
Validity of the Bulk-Staining Technique to Separate Artifactual From In Vivo Bone Microdamage
,”
Clinical Orthopaedics and Related Research
, Vol.
260
, pp.
305
308
.
5.
Burr
D. B.
,
Schaffler
M. B.
, and
Frederickson
R. G.
,
1988
, “
Composition of the Cement Line and Its Possible Mechanical Role as a Local Interface in Human Compact Bone
,”
J. Biomechanics
, Vol.
21
, pp.
939
945
.
6.
Cameron
H. U.
, and
Fornasier
V. L.
,
1975
, “
Trabecular Stress Fractures
,”
Clinical Orthopaedics and Related Research
, Vol.
111
, pp.
266
268
.
7.
Cane`
V.
,
Marotti
G.
,
Volpi
G.
,
Zaffe
D.
,
Palazzini
S.
,
Remaggi
F.
,
Muglia
M. A.
,
1982
, “
Size and Density of Osteocyte Lacunae in Different Regions of Long Bones
,”
Calcified Tissue International
, Vol.
34
, pp.
558
563
.
8.
Carter
D. R.
,
Fyhrie
D. P.
, and
Whalen
R. T.
,
1987
, “
Trabecular Bone Density and Loading History: Regulation of Connective Tissue Biology by Mechanical Energy
,”
J. Biomechanics
, Vol.
20
, pp.
785
794
.
9.
Carter
D. R.
, and
Hayes
W. C.
,
1977
, “
Compact Bone Fatigue Damage. A Microscopic Examination
,”
Clinical Orthopaedics and Related Research
, Vol.
127
, pp.
265
274
.
10.
Chamay
A.
, and
Tschantz
P.
,
1972
, “
Mechanical Influences in Bone Remodelling. Experimental Research on Wolff’s Law
,”
J. Biomechanics
, Vol.
5
, pp.
173
180
.
11.
Cowin
S. C.
,
Moss-Salentijn
L.
, and
Moss
M. L.
,
1991
, “
Candidates for the Mechanosensory System in Bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
191
197
.
12.
Cowin
S. C.
, and
Van Buskirk
W. C.
,
1979
, “
Surface Bone Remodelling Induced by a Medullary Pin
,”
J. Biomechanics
, Vol.
12
, pp.
269
276
.
13.
Currey
J. D.
,
1962
, “
Stress Concentrations in Bone
,”
Quarterly Journal of Microscopial Science
, Vol.
103
, pp.
111
133
.
14.
Currey, J. D., 1984, The Mechanical Adaptations of Bones, Princeton University Press, NJ.
15.
Frost
H. M.
,
1960
, “
Presence of Microscopic Cracks In Vivo in Bone
,”
Henry Ford Hospital Medical Bulletin
, Vol.
8
, pp.
25
35
.
16.
Frost, H. M., 1973, Orthopaedic Biomechanics, Charles C. Thomas, Springfield, IL.
17.
Frost, H. M., 1986, Intermediary Organization of the Skeleton, CRC Press, Boca Raton, FL.
18.
Hull, D., 1981, An Introduction to Composite Materials, University Press, Cambridge, England, U.K.
19.
Huiskes, R., Janssen, J. D., and Slooff, T. J., 1981, “A Detailed Comparison of Experimental and Theoretical Stress-Analyses of a Human Femur,” Mechanical Properties of Bone, S. C. Cowin, ed., The American Society of Mechanical Engineers, New York, pp. 211–234, AMD-Vol. 45.
20.
Huiskes
R.
, and
Hollister
S. J.
,
1993
, “
From structure to process, from organ to cell: Recent developments of FE-analysis in orthopaedic biomechanics
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
520
527
.
21.
Huiskes
R.
,
Weinans
H.
,
Grootenboer
H. J.
,
Dalstra
M.
,
Fudala
B.
, and
Slooff
T. J.
,
1987
, “
Adaptive Bone-Remodelling Theory Applied to Prosthetic Design Analysis
,”
J. Biomechanics
, Vol.
20
, pp.
1135
1150
.
22.
Hogan
H. A.
,
1992
, “
Micromechanics Modelling of Haversian Cortical Bone Properties
,”
J. Biomechanics
, Vol.
25
, pp.
549
556
.
23.
Jacob
H. A. C.
, and
Huggler
A. H.
,
1980
, “
An Investigation Into the Biomechanical Causes of Prosthesis Stem Loosening within the Proximal End of the Human Femur
,”
J. Biomechanics
,
13
,
159
173
.
24.
Katz
J. L.
,
Yoon
H. S.
,
Lipson
S.
,
Maharidge
R.
,
Meunier
A.
, and
Christel
P.
,
1984
, “
The Effects of Remodelling on the Elastic Properties of Bone
,”
Calcified Tissue International
, Vol.
36
, pp.
S31–S36
S31–S36
.
25.
Lemaiˆtre
J.
,
1984
, “
How to Use Damage Mechanics
,”
Nuclear Engineering Design
, Vol.
80
, pp.
233
245
.
26.
Marotti
G.
,
Cane`
V.
,
Palazzini
S.
, and
Palumbo
C.
,
1990
, “
Structure Function Relationships in the Osteocyte
,”
Italian J. Mineral and Electrolyte Metabolism
, Vol.
4
, pp.
93
106
.
27.
Martin, R. B., and Burr, D. B., 1989, The Structure, Function and Adaptation of Cortical Bone, Raven Press, New York.
28.
McElwaine
J. P.
, and
Sheehan
J. M.
,
1982
, “
Spontaneous Fractures of the Femoral Neck After Total Replacement of the Knee
,”
J. Bone and Joint Surgery
, Vol.
64B
, pp.
323
325
.
29.
Mori
S.
, and
Burr
D. B.
,
1993
, “
Increased Intracortical Remodeling Following Fatigue Damage
,”
Bone
, Vol.
14
, pp.
103
109
.
30.
Mullender, M. G., Huiskes, R., and Weinans, H., 1994, “A Proposal for the Regulatory Mechanisms Behind Wollf’s Law,” Transactions of the European Orthopaedic Research Society, London, p. 83.
31.
Parfitt
A. M.
,
1984
, “
The Cellular Basis of Bone Remodelling: The Quantum Concept Reexamined in the Light of Recent Advances in the Cell Biology of Bone
,”
Calcified Tissue International
, Vol.
36
, pp.
S37–S45
S37–S45
.
32.
Portighatti Barbos
M.
,
Bianco
P.
, and
Ascenzi
A.
,
1983
, “
Distribution of Osteonic and Interstitial Components in the Human Femoral Shaft with Reference to Structure, Calcification and Mechanical Properties
,”
Acta Anatomica
, Vol.
115
, pp.
178
186
.
33.
Prendergast, P. J., and Huiskes, R., 1994, “The Osteonal-Debonding Hypothesis of Haversian Bone Remodeling: Osteocytes or Bone Lining Cells as Sensors?,” BED-Vol. 28, Advances in Bioengineering, M. J. Askew ed., American Society of Mechanical Engineers, New York, pp. 263–264.
34.
Prendergast
P. J.
, and
Taylor
D.
,
1994
, “
Prediction of Bone Adaptation Using Damage Accumulation
,”
J. Biomechanics
,
27
,
1067
1076
.
35.
Radin, E. L., 1972, “Trabecular Microfractures in Response to Stress: The Possible Mechanism of Wolff’s Law,” Proceedings of the 12th Congress of the International Society of Orthopaedic Surgery and Traumatology. International Congress Series No. 291, Excerpta Mediea; Amsterdam, The Netherlands; pp. 59–65.
36.
Schaffler, M. B., Choi, K., and Milgrom, C, 1994, “Microcracks and Aging in Human Femoral Compact Bone,” Transactions of the Orthopaedic Research Society, p. 190.
37.
Stover, S. M., Martin, R. B., Pool, R. R., Taylor, K. T., and Harrington, T. M., 1993, “In Vivo Labelling of Microdamage in Cortical Bone Tissue,” Transactions of the Orthopaedic Research Society, p. 541.
38.
Weinans
H.
,
Huiskes
R.
, and
Grootenboer
H. J.
,
1992
, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomechanics
, Vol.
25
, pp.
1425
1441
.
This content is only available via PDF.
You do not currently have access to this content.