In this investigation the complex multi-bundle structure of the cruciate ligaments and their interaction with the tibiofemoral joint was modeled analytically by representing the different regions of the cruciates with ligament elements. A sensitivity analysis was then performed to describe the effect that variations of the model input parameters had on the model variables (outputs). The effect that the cruciate ligament bundles had in controlling joint kinematics was dependent on knee flexion angle, and the load applied to the tibiofemoral joint. For passive range of knee motion with the thigh in the horizontal plane (a common rehabilitation activity), all cruciate ligament bundles were strained with the joint positioned between 0 and 10 deg of knee flexion, between 10 and 50 deg only the anterior bundle of the posterior cruciate ligament A-PCL was strained, and from 50 to 90 deg both the anteromedial portion of the anterior cruciate ligament A-ACL and the A-PCL were strained. This finding indicates that a strain distribution about a transverse cross section of the cruciates exists, and demonstrates the importance of differentiating between the strained and unstrained (unloaded) states of these ligaments. The strain value of a cruciate ligament bundle was an indication of how the bundle controls joint kinematics, while the unstrained values describe how much the ligament bundle must deform before it becomes strained and a restraint to tibiofemoral joint motion. In response to anterior and posterior directed loads, applied parallel to the tibial plateau, the respective ACL and PCL load values were larger in magnitude. The sensitivity of the model outputs to the input parameters was highly dependent on knee flexion angle. The geometrical input parameters of the model (including the ligament insertion site locations and articular surface geometry) had the most pronounced effect on the model output quantities, while the stiffness and initial strain conditions of the ligament bundles had less of an effect on the model outputs. When loaded, the strain values of the ligament bundles were sensitive to the ligament insertion site position. The greatest sensitivity of the model outputs was the femoral insertion of the ACL; supporting clinical impressions and previous experimental findings. Changes in the anterior-posterior dimension of the femoral articular surface did not produce a substantial effect on the model outputs, while changes in the proximal-distal dimension created a large effect; similar results were found for the tibial surface dimensions. These findings indicate that rigid body contact between the articular surfaces may not be a realistic assumption particularly with application to the prediction of tibiofemoral compressive loading and the force/strain values of the cruciate ligament elements. This also has important implications for the design and clinical application of total knee replacements (that function as rigid bodies), particularly those that spare the PCL.

1.
Andriacchi
T. P.
,
Mikosz
R. P.
,
Hampton
S. J.
, and
Galante
J. O.
,
1983
, “
Model Studies of the Stiffness Characteristics of the Human Knee Joint
,”
J Biomech
, Vol.
16
, pp.
23
29
.
2.
Arms
S. W.
,
Pope
M. H.
,
Johnson
R. J.
,
Fischer
R. A.
,
Arvidsson
I.
, and
Eriksson
E.
,
1984
, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
Am. J. Sports Med.
, Vol.
12
, pp.
8
18
.
3.
Beynnon
B. D.
,
Howe
J. G.
,
Pope
M. H.
,
Johnson
R. J.
, and
Fleming
B. C.
,
1992
a, “
The Measurement of Anterior Cruciate Ligament Strain In Vivo
,”
Int. Orthop.
, Vol.
16
(
1
), pp.
1
12
.
4.
Beynnon
B. D.
,
Pope
M. H.
,
Wertheimer
C. M.
,
Johnson
R. J.
,
Fleming
B. C.
,
Nichols
C. E.
, and
Howe
J. G.
,
1992
b, “
The Effect of Functional Knee Braces on Strain on the Anterior Cruciate Ligament In-Vivo
,”
J. Bone Joint Surg.
, Vol.
74A
, pp.
1298
1312
.
5.
Blankevoort, L., and Huiskes, R., 1987a, “Mathematical Simulation of Passive Knee Joint Motions.” Biomechanics: Basic and Applied Research. Selected Proceedings of the Fifth Meeting of the European Society of Biomechanics, Published by Martinus Nijhoff, Sept. 8–10, 1986, Berlin FRO.
6.
Blankevoort, L., and Huiskes, R., 1987b, “The Effects of ACL Substitute Location on Knee Joint Motion and Cruciate Ligament Strains,” Proceedings of the 33rd Annual Orthopaedic Research Society, Jan. 19–22, San Francisco, Ca. pp. 268.
7.
Blankevoort, L., and Huiskes, R., 1991a, “ACL Isometry is Not the Criterion for ACL Reconstruction,” Proceedings of the 37th Annual Orthopaedic Research Society Meeting, March 4–7, Anaheim, CA. pp. 203.
8.
Blankevoort
L.
,
Huiskes
R.
, and
deLang
A.
,
1991
b, “
Recruitment of the Knee-joint Ligaments
,”
J. Biomech. Eng.
, Vol.
113
, pp.
94
103
.
9.
Blankevoort
L.
,
Huiskes
R.
,
Kuiper
J. H.
, and
Grootenboer
H. J.
,
1991
c, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
, Vol.
24
(
11
), pp.
1019
31
.
10.
Blankevoort
L.
, and
Huiskes
R.
,
1991
d, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
263
9
.
11.
Blankevoort
L.
, and
Huiskes
R.
,
1991
e, “
Parametric Validation of a 3-D Knee Joint Model
,”
J. Biomech.
, Vol.
24
(
6
), p.
488
488
.
12.
Bradley
J.
,
Fitzpatrick
D.
,
Daniel
D.
,
Shercliff
T.
, and
O’Connor
J.
,
1988
, “
Orientation of the Cruciate Ligament in the Sagittal Plane, a Method of Predicting Its Length-Change With Flexion
,”
J. Bone Joint Surg.
, Vol.
70B
(
1
), pp.
94
99
.
13.
Butler
D. L.
,
Guan
Y.
,
Kay
M. D.
,
Feder
S. M.
, and
Cummings
J. P.
,
1992
, “
Location-Dependent Variations in the Material Properties of Anterior Cruciate Ligament
,”
J. Biochem.
,
25
(
5
), pp.
511
18
.
14.
Butler
D. L.
,
1989
, “
The Anterior Cruciate Ligament: Its Normal Response and Replacement
,”
J. Orthop. Res.
,
7
, pp.
910
921
.
15.
Dempster
W. T.
, and
Gaughran
G. R.
,
1967
, “
Properties of Body Segments Based on Size and Weight
,”
American J. of Anatomy
,
120
, pp.
33
54
.
16.
Edixhoven
P. H.
,
Huiskes
R.
,
deGraff
R.
,
van Rens
Th. J. G.
, and
Slooff
T. J.
,
1987
, “
Accuracy and Reproducibility of Instrumented Knee-Drawer Tests
,”
J. Orthop. Res.
,
5
, pp.
378
387
.
17.
Goodfellow
J.
, and
O’Connor
J.
,
1978
, “
The Mechanics of the Knee and Prosthesis Design
,”
J. Bone Joint Surg.
,
60B
, pp.
358
69
.
18.
Hefzy
M. S.
, and
Grood
E. S.
,
1988
, “
Review of Knee Models
,”
Appl. Mech. Rev.
,
41
(
1
),
1
13
.
19.
Hefzy
M. S.
, and
Grood
E. S.
,
1986
, “
Sensitivity of Insertion Locations on Length Patterns of Anterior Cruciate Ligament Fibers
,”
J. Biomech. Eng.
,
108
,
73
82
.
20.
Hefzy
M. S.
,
Grood
E. S.
, and
Noyes
F. R.
,
1989
, “
Factors Affecting the Region of Most Isometric Femoral Attachments, Part II: The Anterior Cruciate Ligament
,”
Amer. J. Sports Med.
, Vol.
17
(
2
), pp.
208
216
.
21.
Huston
R. L.
, and
Passerello
C. E.
,
1971
, “
On the Dynamics of a Human Body Model
,”
J. Biomech.
, Vol.
4
, pp.
369
378
.
22.
Jonsson, H., and Karrholm, J., 1992, “Kinematics of the Weight-Bearing Knee With and Without ACL Injury,” Trans. Orthop. Res. Soc., Washington, DC, pp. 664.
23.
Kapandji, I. A., 1970, “The Physiology of the Joints: Annotated Diagrams of the Joints,” Vol. 2. Edinburgh: Churchill Livingstone.
24.
Kurosawa
H.
,
Yamakoshi
K.-I.
,
Kazunori
Y.
, and
Sasaki
T.
,
1991
, “
Simultaneous Measurement of Changes in Length of the Cruciate Ligaments During Knee Motion
,”
Clin. Orthop.
, Vol.
265
, pp.
233
40
.
25.
Markolf
K. L.
,
Mensch
J. S.
, and
Amstutz
H.
,
1976
, “
Stiffness and Laxity of the Knee—the Contributions of the Supporting Structures. A Quantitative In-Vitro Study
,”
J. Bone Joint Surg.
,
58A
, pp.
583
94
.
26.
Markolf
K. L.
,
Graff-Radford
A.
, and
Amstutz
H. C.
,
1978
, “
In Vivo Stability—A Quantitative Assessment Using an Instrumented Clinical Testing Apparatus
,”
J. Bone Joint Surg.
, Vol.
60A
, pp.
664
674
.
27.
Markolf
K. L.
,
Gorek
J. F.
,
Kabo
M. J.
, and
Shapiro
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament. An In Vitro Study Performed With a New Experimental Technique
,”
J. Bone Joint Surg.
, Vol.
72A
(
4
), pp.
557
567
.
28.
Martin, E. T., 1987, “The Effect of Flexion, Tibial Rotation and Depth on the 3-D Orientation Length and Straightness of the Human Cruciate Ligaments,” Academic Masters Thesis, University of Cincinnati.
29.
Menschik
A.
,
1974
, “
Mechanik des Kniegelenkes
,” Teil I. Z.,
Orthop.
, Vol.
112
, pp.
481
95
.
30.
Morrison
J. B.
,
1968
, “
Bioengineering Analysis of Force Actions Transmitted by the Knee Joint
,”
J. Bio-Medical Eng.
, Vol.
3
(
4
), pp.
164
170
.
31.
Morrison
J. B.
,
1969
, “
Functions of the Knee Joint in Relation to Normal Walking
,”
J. Bio-Medical Eng.
, Vol.
4
(
12
), pp.
573
580
.
32.
Morrison
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
, Vol.
3
, pp.
51
61
.
33.
Muller, W., 1983, The Knee: Form, Function and Ligament Reconstruction, Springer-Verlag, New York.
34.
Nisell, R., 1985, “On the Biomechanics of the Knee—A Study of Joint and Muscle Load With Application in Ergonomics, Orthopaedics and Rehabilitation,” Academic Dissertation, Karolinska Institute, Department of Anatomy, Stockholm, Sweden.
35.
O’Connor, J., Shercliff, T., FitzPatrick, J. B., Daniel, D. M., Biden, E., and Goodfellow, J. 1990, “Geometry of the Knee,” Knee Ligaments: Structure, Function, Injury, and Repair, Daniel, D., Akeson, W., and O’Connor, J., ed., pp. 163–199. Raven Press, New York.
36.
Pope
M. H.
,
Crowninshield
R.
,
Miller
R.
, and
Johnson
R. J.
,
1976
, “
The Static and Dynamic Behavior of the Human Knee In Vivo
,”
J. Biomech.
, Vol.
9
, pp.
449
52
.
37.
Rouleaux, F., 1876, “Theoretische Kinematik; Grudzuge Einer Theori Des Maschinenwesens Vieweg. Brauschweig. also translated by A B W Kennedy, The Kinematics of Machinery: Outline of a Theory of Machines. MacMillan, London.
38.
Sapega
A. A.
,
Moyer
R. J.
,
Schneck
C.
, and
Komalahiranya
N.
,
1990
, “
Testing for Isometry During Reconstruction of the Anterior Cruciate Ligament
,”
J. Bone Joint Surg.
,
72A
(
2
), pp.
259
67
.
39.
Shapeero
L. G.
,
Dye
S. F.
,
Lipton
M. J.
,
Gould
R. G.
,
Galvin
E. G.
, and
Genant
H. K.
,
1988
, “
Functional Dynamics of the Knee Joint by Ultrafast, Cine CT
,”
J. Investigative Radiology
, Vol.
23
(
2
), pp.
118
123
.
40.
Strasser, H., 1917, Lehrbuch der Muskel und Gelenkmechanik, Springer, Berlin, Vol. 3.
41.
Torzilli
P.
,
Greenberg
R. L.
, and
Insall
J.
,
1981
, “
An In-Vivo Biomechanical Evaluation of Anterior-Posterior Motion of the Knee
,”
J. Bone Joint Surg.
, Vol.
63A
, pp.
960
968
.
42.
Trent
P. S.
,
Walker
P. S.
, and
Wolf
B.
,
1976
, “
Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint
,”
Clin. Orthop.
, Vol.
117
, pp.
263
70
.
43.
Wismans, J., 1980, “A Three-Dimensional Mathematical Model of the Human Knee Joint,” PhD dissertation, Eindhoven University of Technology, Eindhoven, Netherlands.
44.
Wismans
J.
,
Veldpaus
F.
,
Janssen
J.
,
Huson
A.
, and
Struben
P.
,
1980
, “
A Three-Dimensional Mathematical Model of the Knee Joint
,”
J. Biomech.
, Vol.
13
, pp.
677
685
.
45.
Yamaguchi
G. T.
, and
Zajac
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
, Vol.
22
(
1
), pp.
1
10
.
This content is only available via PDF.
You do not currently have access to this content.