The quantification of particle (platelet) residence times in arterial geometries is relevant to the pathogenesis of several arterial diseases. In this manuscript, the concept of “volumetric residence time” (VRT) is introduced. The VRT takes into account where particles accumulate and how long they remain there, and is wellsuited to characterizing particle distributions in the complex geometries typical of the cardiovascular system. A technique for the calculation of volumetric residence time is described, which assumes that platelets are neutrally buoyant passive tracer particles, and which tracks small Lagrangian fluid elements containing a uniform concentration of platelets. This approach is used to quantify particle (platelet) residence times in the region of a modeled stenosis with a 45 percent area reduction. Residence time distributions are computed for a representative population of platelets, and for a subpopulation assumed to be “activated” by exposure to shear stresses above a threshold value. For activated platelets, high particle residence times were observed just distal to the apex of the stenosis throat, which can be explained by the presence of high shear stresses and low velocities in the throat immediately adjacent to the vessel wall. Interestingly, the separation zone distal to the stenosis showed only modestly elevated residence times, due to its highly mobile and transient nature. This calculation demonstrates the utility of the VRT concept for cardiovascular studies, particularly if a subpopulation of all particles is to be tracked. We conclude that the volumetric residence time is a useful tool.

1.
Hellums, J. D., Peterson, D. M., Stathopoulos, N. A., Moake, J. L., and Giorgio, T. D.,” Studies on the Mechanism of Shear-Induced Platelet Activation,” A. Hartmann and W. Kuchinsky, eds. Cerebral Ischemia and Hemorheology, Springer-Verlag, Berlin, 1987, pp. 80–89.
2.
LoGerfo
F. W.
,
Quist
W. C.
,
Nowak
M. D.
,
Crawshaw
H. M.
, and
Haudenschild
C. C.
, “
Downstream Anastomotic Hyperplasia: A Mechanism of Failure in Dacron Arterial Grafts
,”
Ann Surg
, Vol.
197
,
1983
, pp.
479
483
.
3.
Sottiurai
V. S.
,
Sue
S. L.
,
Feinberg
E. L.
,
Bringaze
W. L.
,
Tran
A. T.
, and
Batson
R. C.
, “
Distal Anastomotic Intimal Hyperplasia: Biogenesis and Etiology
,”
Eur J Vasc Surg
, Vol.
2
,
1988
, pp.
245
256
.
4.
Ross, R., “Platelets and Atherosclerosis,” Oates JA, Hawiger J, and Ross R, eds. Interaction of Platelets with the Vessel Wall, chapter 9, American Physiological Society, Bethesda MD, 1985.
5.
Mugler, D. H., and Rittgers, S. E., “Numerical Analysis of Hemodynamics Within a Severe Arterial Stenosis: Potential for Thrombotic Occlusion,” N. A. Langrana, M. H. Friedman, and E. S. Grood, eds, 1993 Bioengineering Conference: BED - 24, New York, 1993, ASME Press, pp. 216–219.
6.
Perktold
K.
, “
On the Paths of Fluid Particles in an Axisymmetrical Aneurism
,”
Journal of Biomechanics
, Vol.
20
(
3
),
1987
, pp.
311
317
.
7.
Perktold
K.
, and
Hilbert
D.
, “
Numerical Simulation of Pulsatile Flow in a Carotid Bifurcation Model
,”
J. Biomed Eng
, Vol.
8
,
1986
, pp.
193
199
.
8.
Perktold
K.
,
Peter
R.
, and
Resch
M.
, “
Pulsatile Non-Newtonian Blood Flow Simulation Through a Bifurcation with an Aneurism
,”
Biorheology
, Vol.
26
,
1989
, pp.
1011
1030
.
9.
Steinman
D. A.
,
Vinh
B.
,
Ethier
C. R.
,
Ojha
M.
,
Cobbold
R. S. C.
, and
Johnston
K. W.
, “
A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
,
1993
, pp.
112
118
.
10.
Ojha
M.
,
Cobbold
R. S. C.
,
Johnston
K. W.
, and
Hummel
R. L.
, “
Pulsatile Flow Through Constricted Tubes: An Experimental Investigation Using Photochromic Tracer Methods
,”
J Fluid Mech
, Vol.
203
,
1989
, pp.
173
197
.
11.
Lunney
M. D. N.
,
Moore
R. B.
,
Webb
J. P.
, and
Forghani
B.
, “
Particle Trajectory Calculations Using Finite Element Electromagnetic Field Maps
,”
IEEE Transactions on Magnetics
, Vol.
24
(
6
),
1988
, pp.
3126
3128
.
12.
Kunov, M. J., “Numerical Simulation and Visualization of Blood Flow in Arterial Bypass Grafts,” M.A.Sc., Department of Mechanical Engineering, University of Toronto, Toronto, 1992.
13.
Pydisetti
Y.
,
Krishnaiah
K.
, and
Varma
Y. B. G.
, “
Axial Dispersion of Solids in Spiral Fluidized Beds
,”
Powder Technology
, Vol.
59
,
1989
, pp.
1
9
.
14.
Shetigar
U. R.
,
Dropman
M.
,
Christian
P. E.
, and
Kolff
W. J.
, “
Residence Time Distributions in Artificial Ventricles
,”
Transactions of the American Society of Artificial Internal Organs
, Vol.
XXXV
,
1989
, pp.
708
712
.
15.
Philipossian
A.
, and
Van Wormer
K.
, “
Nonideal Flow Behaviour Analysis of Atmospheric Thermal Silicon Oxidation Reactors by the Residence Time Distribution Technique
,”
Journal of the Electrochemical Society
, Vol.
138
(
8
),
1991
, pp.
2451
2459
.
16.
Zhang
G. T.
,
Wannemacher
N.
,
Haider
A.
, and
Levenspiel
O.
, “
How to Narrow the Residence Time Distribution of Fluids in Laminar Flow in Pipes
,”
The Chemical Engineering Journal
, Vol.
45
,
1990
, pp.
43
48
.
17.
Dickens
A. W.
,
Mackley
M. R.
, and
Williams
H. R.
, “
Experimental Residence Time Distribution Measurements for Unsteady Flow in Baffled Tubes
,”
Chemical Engineering Science
, Vol.
44
(
7
),
1989
, pp.
1471
1479
.
18.
Hellums, J. D., and Hardwick, R. A., “Response of Platelets to Shear Stress—A Review,” Hwang, N. H. C., and Gross, D. R., eds, Hemovascular Rheology: The Physics of Blood And Vascular Tissue, Sijthoff and Noorhoff, Amsterdam, 1981, pp. 160–183.
19.
Markou, C. P., Hanson, S. R., Siegel, J. M., and Ku, D. N., “The Role of High Wall Shear Rate on Thrombus Formation in Stenoses,” N. A. Langrana, M. H. Friedman, and E. S. Grood, eds, 1993 Bioengineering Conference: BED-24, New York, 1993. ASME Press, pp. 555–558.
20.
Markou, C. P., Hanson, S. R., and Ku, D. N., “Platelet Deposition in Sections of Arterial Stenosis is Proportional to Local Shearing Conditions,” L. Blankevoort and J. G. M. Kooloos, eds. Proceedings Second World Congress of Biomechanics, 1994, pp. I–112.
21.
Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. The Mechanics of the Circulation, Oxford University Press, Oxford, 1978.
22.
Nichols, W. W., and O’Rourke, M. F., McDonald’s Blood Flow in Arteries, Lea & Febiger, Philadelphia, Third Edition, 1990.
This content is only available via PDF.
You do not currently have access to this content.