Various studies suggest impact trauma may initially soften cartilage, damage subchondral bone, or a combination thereof. The initial damages are commonly thought due to excessive contact pressures generated on cartilage and the underlying bone. The objective of this research was to develop a small animal model for studying post-traumatic OA and to correlate contact pressures with tissue damage. Blunt insult was graded by dropping a rigid mass onto the hyperflexed hind limb of rabbits. Contact pressure in the patello-femoral joint was measured with pressure sensitive film. One, 3, 6, and 14 days later the animals were euthanized. Damage to cartilage and the underlying bone was assessed visually and in microscopic sections. Indentation experiments were performed on the patellar cartilage with a rigid, flat probe. Contact pressures were nonuniform over the articular surfaces and a high frequency of surface fissures were generated on the lateral facet in severe insults. The appearance of surface fissures correlated better with the magnitude of contact pressure gradients in the damage zone than the magnitude of contact pressures on the facet, per se. Blunt trauma causing surface fissures resulted in a measurable degree of softening in the patellar cartilage, especially close to the defects. Surgical intervention of the joint to insert pressure sensitive film, however, also resulted in significant softening of the cartilage.

1.
Armstrong
C.
, and
Mow
V.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage with Age, Degeneration, and Water Content
,”
The Journal of Bone and Joint Surgery
, Vol.
64-A
(
1
), pp.
88
94
.
2.
Armstrong, C. G., Mow, V. C,. Wirth, C. R., 1985, “Biomechanics of Impact-Induced Mocrodamage to Articular Cartilage: A Possible Genesis for Chondromalacia Patella,” Amer. Acad. of Orth. Surg. Symp. on Sports Med., ed. G. Fenerman, pp. 70–84.
3.
Arnoczky, S., 1990, Animal Models for Knee Ligaments Research, Knee Ligaments: Struc., Func., Injury, and Repairs, pp. 401–415.
4.
Askew
M.
, and
Mow
V.
,
1978
, “
The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
100
, pp.
105
115
.
5.
Ateshian
G. A.
,
Kwak
S. D.
,
Soslowsky
L. J.
, and
Mow
V. C.
,
1994
, “
A Stereophotographic Method for Determining in situ Contact Areas in Diarthrodial Joints, and a Comparison with Other Methods
,”
Journal of Biomechanics
, Vol.
27
(
1
), pp.
111
124
.
6.
Brandt
K.
,
Braunstein
E.
,
Visco
D.
,
O’connor
B.
,
Heck
D.
, and
Albrecht
M.
,
1991
, “
Anterior Cruciate Ligament Transection in the Dog: A Bona Fide Model of Osteoarthritis Not Merely of Cartilage Injury and Repair
,”
Journal of Rheumatology
, Vol.
18
(
3
), pp.
436
446
.
7.
Brighton
C.
,
Shadle
A.
,
Jimenez
A.
,
Irwin
J.
,
Lane
J.
, and
Lipton
M.
,
1979
, “
Articular Cartilage Preservation and Storage
,”
Arthritis and Rheumatism
, Vol.
22
(
10
), pp.
1093
1101
.
8.
Chin
M.
,
Donahue
J.
,
Erdman
A.
,
Oegema
T.
, and
Thompson
R.
,
1986
, “
Biomechanical Analysis of an Adult Canine Patella under an Indirect Blunt Trauma
,”
Proceedings of the Orthopaedic Research Society
, Vol.
32
, p.
232
232
.
9.
Christensen
S. B.
,
1985
, “
Osteoarthritis changes of bone, cartilage and synovial membrane in relation to bone scintigraphy
,”
Acta Orthopaedica Scandinavia Supple
, Vol.
214
(
56
), pp.
1
43
.
10.
Donahue
J. M.
,
Buss
D.
,
Oegema
T. R.
, and
Thompson
R. C.
,
1983
, “
The effects of indirect blunt trauma on adult canine articular cartilage
,”
The Journal of Bone and Joint Surgery
, Vol.
65(A)
, pp.
948
957
.
11.
Donahue
J. M.
,
Buss
D.
,
Oegema
T. R.
, and
Thompson
R. C.
,
1983
, “
The Effects of Indirect Blunt Trauma on Adult Canine Articular Cartilage
,”
The Journal of Bone and Joint Surgery
, Vol.
65-A
(
7
), pp.
948
957
.
12.
Eberhardt
A.
,
Keer
L.
,
Lewis
J.
, and
Vithoontien
V.
,
1990
, “
An Analytical Model of Joint
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
407
413
.
13.
Hale
J. E.
, and
Brown
T. D.
,
1993
, “
Fidelity of Contact Stress Gradient Detection by Pressensor Film
,”
Advances in Bioengineering ASME
, Vol.
26
, pp.
405
408
. (Abstract).
14.
Haut
R.
,
1989
, “
Contact Pressures in the Patello-Femoral Joint During Impact Loading on the Human Flexed Knee
,”
Journal of Orthopaedic Research
, Vol.
7
, pp.
272
280
.
15.
Haut
R. C.
,
1985
, “
Impact Studies on the Canine Knee Model
,”
Proceeding of the American Society of Biomechanics
, Vol.
9
, pp.
117
118
(Abstract).
16.
Hayes
W.
,
Keer
L.
,
Herrmann
G.
, and
Mockros
L. A.
,
1972
, “
Mathematical Analysis for Identification Tests of Articular Cartilage
,”
Journal of Biomechanics
, Vol.
5
, pp.
541
551
.
17.
Hoch
D.
,
Grodzinsky
A.
,
Koob
T.
,
Albert
M.
, and
Eyre
D.
,
1983
, “
Early changes in material properties of rabbit articular cartilage after meniscectomy
,”
Journal of Orthopaedic Research
, Vol.
1
, pp.
4
12
.
18.
Huberti
H.
, and
Hayes
W.
,
1984
, “
Patellofemoral Contact Pressure
.”
The Journal of Bone and Joint Surgery
, Vol.
66-A
(
5
), pp.
715
724
.
19.
Jurvelin
J.
,
Saamanen
A.
,
Arokoski
J.
,
Helminen
H.
,
Kiviranta
I.
, and
Tammi
M.
,
1988
, “
Biomechanical Properties of the Canine Knee Articular Cartilage as Related to Matrix Proteoglycans and Collagen
,”
Engineering in Medicine
, Vol.
17
(
4
), pp.
157
162
.
20.
Mak
A.
,
Mow
V.
, and
Lai
W.
,
1987
, “
Biphasic Indentation of Articular Cartilage-I Theoretical Analysis
,”
Journal of Biomechanics
, Vol.
20
(
7
), pp.
703
714
.
21.
Meachim
G.
,
1972
, “
Light microscopy of indian ink preparations of fibrillated cartilage
,”
Annals of the Rheumatic Diseases
, Vol.
31
, pp.
457
464
.
22.
Nyquist
G.
, and
King
A.
,
1985
, “
Lower extremities
,”
Rev. Biomech. Impact Res. Inj. Auto. Env.
, Vol.
6
, pp.
163
201
.
23.
Parsons
J.
, and
Black
J.
,
1987
, “
Mechanical Behavior of Articular Cartilage Quantitative Changes with Enzymatic Alteration of the Proteoglycan Fraction
,”
Bulletin Hos. Joint Diseases. Orthop. Insti.
Vol.
47
(
1
), pp.
13
31
.
24.
Parsons
J.
, and
Black
J.
,
1977
, “
The Viscoelastic Shear Behavior of Normal Rabbit Articular Cartilage
,”
Journal of Biomechanics
, Vol.
10
, pp.
21
29
.
25.
Radin
E.
,
Martin
R.
,
Burr
D.
,
Caterson
B.
,
Boyd
R.
, and
Goodwin
C.
,
1984
, “
Effects of Mechanical Loading on the Tissues of the Rabbit Knee
,”
Journal of Orthopaedic Research
, Vol.
2
, pp.
221
234
.
26.
Repo
R.
, and
Finlay
J.
,
1977
, “
Survival of Articular Cartilage after Controlled Impact
,”
The Journal of Bone and Joint Surgery
, Vol.
59-A
(
8
), pp.
1068
1076
.
27.
Saamanen
A.
,
Tammi
M.
,
Kiviranta
I.
,
Jurvelin
J.
, and
Helminen
H.
,
1987
, “
Maturation of Proteoglycan Matrix in Articular Cartilage under Increased and Decreased Joint Loading
,” A study in young rabbits,”
Connective Tissue Research
, Vol.
16
, pp.
163
175
.
28.
Setton
L. A.
,
Zhu
W.
, and
Mow
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
Journal of Biomechanics
, Vol.
26
(
4/5
), pp.
581
592
.
29.
Shimizu, M., Tsuji, H., Matsui, H., Katoh, Y., and Sano, A., 1993, “Morphometric Analysis of Subchondral Bone of the Tibial Condyle in Osteoarthrosis,” Clinical Orthopaedics, pp. 229–239.
30.
Silyn-roberts
H.
, and
Broom
N.
,
1990
, “
Fracture Behavior of Cartilage-on-bone in Response to Repeated Impact Loading
,”
Connective Tissue Research
, Vol.
24
, pp.
143
156
.
31.
Thompson
R. C.
,
Oegema
T. R.
,
Lewis
J. L.
, and
Wallace
L.
,
1991
, “
Osteoarthritic changes after acute transarticular load
,”
The Journal of Bone and Joint Surgery
, Vol.
73-A
(
7
), pp.
990
1001
.
32.
Tomatsu
T.
,
Imai
N.
,
Takeuchi
N.
,
Takahashi
K.
, and
Kimura
N.
,
1992
, “
Experimentally produced fractures of articular cartilage and bone
,”
The Journal of Bone and Joint Surgery
, Vol.
3
, pp.
457
461
.
33.
Vener
M. J.
,
Thompson
R. C.
,
Lewis
J. L.
, and
Oegema
T. R.
,
1992
, “
Subchondral Damage After Acute Transarticular Loading-An In Vitro Model of Joint Injury
,”
Journal of Orthopaedic Research
, Vol.
10
, pp.
759
765
.
34.
Yang
K.
,
Boyd
R.
,
Kish
V.
,
Burr
D.
,
Caterson
B.
, and
Radin
E.
,
1989
, “
Differential effect of load magnitude and rate on the initiation and progression of osteoarthritis
,”
Proceedings of the Orthopaedic Research Society
, Vol.
35
, p.
148
148
.
This content is only available via PDF.
You do not currently have access to this content.