Atherosclerosis, a disease of large- and medium-size arteries, is the chief cause of death in the US and most of the western world. It is widely accepted that the focal nature of the disease in arterial bends, junctions, and bifurcations is directly related to locally abnormal hemodynamics, often labeled “disturbed flows.” Employing the aorto-celiac junction of rabbits as a representative atherosclerotic model and considering other branching blood vessels with their distinctive input wave forms, it is suggested that the local wall shear stress gradient (WSSG) is the single best indicator of nonuniform flow fields leading to atherogenesis. Alternative predictors of susceptible sites are briefly evaluated. The results discussed include transient velocity vector fields, wall shear stress gradient distributions, and a new dimensionless parameter for the prediction of the probable sites of stenotic developments in branching blood vessels. Some of the possible underlying biological aspects of atherogenesis due to locally significant |WSSG|-magnitudes are briefly discussed.

1.
Avolio
A. P.
,
O’Rourke
M. F.
,
Mang
K.
, and
Bason
P. T.
,
1976
, “
A Comparative Study of Pulsatile Arterial Hemodynamics in Rabbits and Guinea Pigs
,”
Am. J. of Physiol.
, Vol.
230
, No.
4
, pp.
868
875
.
2.
Barakat
A. I.
,
Uhthoff
P. A. F.
, and
Colton
C. K.
,
1992
, “
Topographical Mapping of Sites of Enhanced HRP Permeability in the Normal Rabbit Aorta
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
283
292
.
3.
Barbee
K. A.
,
Davies
P. F.
, and
Lai
R.
,
1994
, “
Shear Stress-induced Reorganization of the Surface Topography of living Endothelial Cells imaged by Atomic Force Microscopy
,”
Circ. Res.
, Vol.
74
, pp.
163
171
.
4.
DePaola
N.
,
Gimbrone
M. A.
,
Davies
P. F.
, and
Dewey
C. F.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
, Vol.
12
, No.
11
, pp.
1254
1257
.
5.
Friedman
M. H.
,
Bargeron
C. B.
,
Duncan
D. D.
,
Hutchins
G. M.
, and
Mark
F. F.
,
1992
, “
Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations Between Intimal Thickness and Wall Shear
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
317
320
.
6.
Friedmann
M. H.
,
1993
, “
Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas
,”
ASME Journal of Biomechanical Engineering
, Vol.
115
, pp.
595
601
.
7.
Fung
Y. C.
, and
Liu
S. Q.
,
1993
, “
Elementary Mechanics of the Endothelium of Blood Vessels
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
1
12
.
8.
Giddens
D. P.
,
Zarnis
C. K.
, and
Glagov
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
588
594
.
9.
Herrmann
R. A.
,
Malinauskas
R. A.
, and
Truskey
G. A.
,
1994
, “
Characterization of Sites of Elevated Low Density Lipoprotein at the Intercostal, Celiac and Iliac Branches of the Rabbit Aorta
,”
Arteriosclerosis and Thrombosis
, Vol.
14
, pp.
313
23
.
10.
Kamiya
A.
,
Bukhari
R.
, and
Togawa
T.
,
1984
, “
Adaptive Regulation of Wag Shear Stress Optimizing Vascular Tree Function
,”
Bulletin of Mathematical Biology
, Vol.
46
, No.
1
, pp.
127
137
.
11.
Kamiya
A.
, and
Togawa
T.
,
1980
, “
Adaptive Regulation of Wall Shear Stress to Flow Change in the Canine Carotid Artery
,”
Am. J. Physiol
, Vol.
239
(Heart Circ. Physiol. 8), pp.
H14–H21
H14–H21
.
12.
Karino
T.
,
Kwong
H. H. M.
, and
Goldsmith
H. L.
,
1979
, “
Particle Flow Behavior in Models of Branching Blood Vessels
,”
Biorheology
, Vol.
16
, pp.
231
248
.
13.
Kleinstreuer, C., Nazemi, M., and Archie, Jr., J. P., 1988, “Atherosclerotic Plaque Formation in Aortic Artery Bifurcations,” Proc. of Ann. Int’l Conf, IEEE Eng. In Medicine & Biol Soc., G. Harries and C. Walker, eds., Vol. 10, Part 2/4, IEEE, New York, N.Y.
14.
Kleinstreuer
C.
,
Nazemi
M.
, and
Archie
J. P.
,
1991
, “
Hemodynamics Analyses of a Stenosed Carotid Bifurcation and its Plaque-Mitigating Design
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, No.
3
, pp.
330
335
.
15.
Kleinstreuer, C., Lei, M., Wells, D. R., Truskey, G. A., and Archie, J. P., 1995, “Wall Shear Stress Gradient Comparisons for the Prediction of Stenotic Developments in Branching Blood Vessels,” J. Biomechanics (under review).
16.
Kleinstreuer, C., Lei, M., Wells, D. R., and Truskey, G. A., 1994, “Computational Flow Analysis and Prediction of Atherogenic Sites in Branching Arteries,” In: “Biomedical Engineering—Recent Developments,” J. Vossoughi, ed., Proc. 13th Southern Biomed. Eng. Conf., April 16–17, 1994, Washington, DC, pp. 995–998.
17.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis
, Vol.
5
, pp.
293
302
.
18.
Lei, M., Kleinstreuer, C., and Archie, Jr., J. P., 1992, “Computational Analysis and Design of Graft-Artery Bypass Configurations,” Proceedings of 11th Southern Biomedical Engineering Conference, Oct. 2–4, Memphis, TN, pp. 124–129.
19.
Lei, M., Kleinstreuer, C., and Truskey, G. A., 1995, “A Focal Stress Gradient-dependent Mass Transfer Mechanism for Atherogenesis in Branching Arteries,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING (in press).
20.
Lou
Z.
, and
Yang
W-J.
,
1992
, “
Biofluid Dynamics at Arterial Bifurcations
,”
Critical Reviews in Biomed. Eng.
, Vol.
19
, No.
6
, pp.
455
493
.
21.
Malinauskas, R. A., Barber, K. M., Herrmann, R. A., Sarraf, P., and Truskey, G. A., 1993, “The Association of Hemodynamics with Intimal White Blood Cells and Increased LDL Permeability at the Aorto-celiac Junction in the Normal Rabbit,” presented at the Biomedical Engineering Society 1993 Annual Fall Meeting, Memphis, TN, Oct. 21–24.
22.
Mclntire
L. V.
,
1991
, “
Bioengineering and Vascular Biology
,”
Bioeng. Sci. News, BMES Bulletin
, Vol.
15
, No.
4
, pp.
51
53
.
23.
Merrill
E. W.
,
1968
, “
Rheology of Blood
,”
Physiol. Rev.
, Vol.
49
, pp.
863
888
.
24.
Nazemi
M.
,
Kleinstreuer
C.
, and
Archie
J. P.
,
1990
, “
Pulsatile Two-dimensional Flow and Plaque Formation in a Carotid Artery Bifurcation
,”
J. Biomechanics
, Vol.
23
, No.
10
, pp.
1031
1037
.
25.
Nerem
R. M.
,
1992
, “
Vascular Fluid Mechanics & the Arterial Wall, and Atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
274
282
.
26.
Ojha
M.
,
1983
, “
Spatial and Temporal Variations of Wall Shear Stress within an End-to-side Arterial Anastomosis Model
,”
J. Biomech.
, Vol.
26
, No.
12
, pp.
1377
1388
.
27.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington.
28.
Patel, D. J., and Vaishnav, R. N., 1980, Basic Hemodynamics and Its Role in Disease Processes, University Park Press, Baltimore, MD.
29.
Rhie
C. M.
, and
Chow
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation
,”
AIAA J1
, Vol.
21
, pp.
1527
1532
.
30.
Rindt, C. C. M., 1989, “Analysis of the Three-Dimensional Flow Field in the Carotid Artery Bifurcation,” Ph.D. thesis, Eindhoven University of Technology, The Netherlands.
31.
Ross
R.
,
1986
, “
The Pathogenesis of Atherosclerosis—An Update
,”
The New England J. of Med.
, Vol.
314
, No.
8
, pp.
488
500
.
32.
Satcher
R. L.
, and
Dewey
C. F.
,
1991
, “
The Distribution of Fluid Forces on Arterial Endothelial Cells
,”
1991 Advances in Bioengineering
, ASME, BED-Vol.
20
, pp.
595
598
.
33.
Satcher
R. L.
,
Bussolari
S. R.
,
Gimbrone
M. A.
, and
Dewey
C. F
,
1992
, “
The Distribution of Fluid Forces on Model Arterial Endothelium Using Computational Fluid Dynamics
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
309
316
.
34.
Sottiurai
V. S.
,
Yao
J. S. T.
,
Batson
R. C.
,
Sue
S. L.
,
Jones
R.
, and
Nakamura
Y. A.
,
1989
, “
Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis
,”
Annals of Vascular Surgery
, Vol.
3
, No.
1
, pp.
26
33
.
35.
Stone
H. L.
,
1968
, “
Iterative Solution of Implicit Approximations of Multidimensional Partial Equations
,”
SIAM J. Numer. Anal.
, Vol.
5
, pp.
530
558
.
36.
Truskey
G. A.
,
Roberts
W. L.
,
Herrmann
R. A.
, and
Malinauskas
R. A.
,
1992
, “
Measurement of Endothelial Permeability to 125I-low Density Lipoproteins in en face Preparations of Rabbit Arteries
,”
Circ. Res.
, Vol.
71
, pp.
883
897
.
37.
Weinbaum
S.
, and
Chien
S.
,
1993
, “
Lipid Transport in Aspects of Atherogensis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
602
610
.
38.
White
S. S.
,
Zarins
C. K.
,
Giddens
D. P.
,
Bassiouny
H.
,
Loth
F.
,
Jones
S. A.
, and
Glagov
S.
,
1993
, “
Hemodynamic Patterns in Two Models of End-to-side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
104
111
.
39.
Zand
T.
,
Majno
G.
,
Nunnari
J. J.
,
Hoffman
A. H.
,
Savilonis
B. J.
,
MacWilliams
B.
, and
Joris
I.
,
1991
, “
Lipid Deposition and Intimal Stress and Strain— A Study in Rats with Aortic Stenosis
,”
Am. J. Pathol.
, Vol.
139
, No.
1
, pp.
101
113
.
40.
Zeindler
C. M.
,
Kratky
R. G.
, and
Roach
M. R.
,
1989
, “
Quantitative Measurements of Early Atherosclerotic Lesions on Rabbit Aortae from Vascular Casts
,”
Atherosclerosis
, Vol.
76
, pp.
245
255
.
This content is only available via PDF.
You do not currently have access to this content.