Strain rate is implemented as a stimulus for surface bone remodeling. Using idealized models of trabecular bone structures, the surface remodeling predictions using the strain rate as the stimulus are compared with the predictions using the peak strain magnitude as the stimulus. For a uniaxially loaded cruciform shape, the comparison shows that the two surface remodeling stimuli predict the same final shape under a periodic compressive load, but the two evolutionary paths to final shapes are different. Two biaxially loaded regular grid models of trabecular structure were considered, one a grid of square diamond shaped elements and the other a brick wall patterned grid. For both of these idealized trabecular structures, the comparison shows that the two surface remodeling stimuli predict the same final shape under a periodic compressive load, even from these distinctly different initial grid patterns, and the evolutionary paths to final shapes are quite different. In general the two stimuli do not predict the same remodeling and the conditions under which they do are derived. The models developed are also applied to the data from the animal experiments reported in Goldstein et al. (1991), and it is shown that the strain rate stimulus predicts bone remodeling similar to what was experimentally observed.

1.
Brown
T. D.
,
Pedersen
D. R.
,
Gray
M. L.
,
Brand
R. A.
, and
Rubin
C. T.
,
1990
, “
Toward an Identification of Mechanical Parameters Initiating Periosteal Remodeling: A Combined Experimental and Analytic Approach
.”
Journal of Biomechanics
, Vol.
23
, pp.
893
905
.
2.
Carter
D. R.
, and
Hayes
W. C.
,
1976
, “
Bone Compressive Strength: The Influence of Density and Strain Rate
,”
Science
, Vol.
194
, p.
1174
1174
.
3.
Cowin
S. C.
, and
Hegedus
D. M.
,
1976
, “
Bone Remodeling I: A Theory of Adaptive Elasticity
,”
Journal of Elasticity
, Vol.
6
, pp.
313
325
.
4.
Cowin
S. C.
, and
Van Buskirk
W. C.
,
1979
, “
Surface Bone Remodeling Induced by a Medullary Pin
,”
Journal of Biomechanics
, Vol.
12
, pp.
269
276
.
5.
Cowin
S. C.
,
Hart
R. T.
,
Balser
J. R.
, and
Kohn
D. H.
,
1985
, “
Functional Adaptation in Long Bones: Establishing In Vivo Values for Surface Remodeling Rate Coefficients
,”
Journal of Biomechanics
, Vol.
18
, pp.
665
684
.
6.
Cowin
S. C.
,
Arramon
Y. P.
,
Luo
G. M.
, and
Sadegh
A. M.
,
1993
, “
Chaos in the Discrete-Time Algorithm for Bone-Density Remodeling Rate Equations
,”
Journal of Biomechanics
, Vol.
26
, pp.
1077
1089
.
7.
Frost, H. M., 1964, The Laws of Bone Structure, Charles C. Thomas, Springfield, III.
8.
Fyhrie
D. P.
, and
Carter
D. R.
,
1986
, “
A Unifying Principle Relating Stress to Trabecular Bone Morphology
,”
Journal of Orthopaedic Research
, Vol.
4
, pp.
304
317
.
9.
Gibson
L. J.
,
1985
, “
The Mechanical Behaviour of Cancellous Bone
,”
Journal of Biomechanics
, Vol.
18
, pp.
317
328
.
10.
Goldstein
S. A.
,
Matthews
L. S.
,
Kuhn
J. L.
, and
Hollister
S. J.
1991
, “
Trabecular Bone Remodeling: An Experimental Model
,”
Journal of Biomechanics
, Vol.
24
, Suppl. 1, pp.
135
150
.
11.
Goldstein
S. A.
,
1993
, “
Corrigendum: Trabecular Bone Remodeling: An Experimental Model
,”
Journal of Biomechanics
, Vol.
26
, p.
367
367
.
12.
Harrigan
T. P.
, and
Hamilton
J. J.
,
1993
, “
Bone Strain Sensation Via Transmembrane Potential Channels in Surface Osteoblasts: Loading Rate and Micro-structural Implications
,”
Journal of Biomechanics
, Vol.
26
, pp.
183
200
.
13.
Herˇt
J.
,
Liskova
M.
, and
Landgrot
B.
1969
, “
Influence of the Long-Term Continuous Bending on the Bone. An Experimental Study on the Tibia of the Rabbit
,”
Folia Morphologia
, Vol.
17
, pp.
389
399
.
14.
Herˇt
J.
,
Liskova
M.
, and
Landa
J.
1971
, “
Reaction of Bone to Mechanical Stimuli. Part I. Continuous and Intermittent Loading of Tibia in Rabbit
,”
Folia Morphologia
, Vol.
19
, pp.
290
300
.
15.
Herˇt
J.
,
Pribylova
E.
, and
Liskova
M.
,
1972
, “
Reaction of Bone to Mechanical Stimuli. Part 3. Microstructure of Compact Bone of Rabbit Tibia After Intermittent Loading
,”
Acta Anatomica
, Vol.
82
, pp.
218
230
.
16.
Huiskes
R.
,
Weinans
H. J.
,
Grootenboer
H. J.
,
Dalstra
M.
,
Fudala
B.
, and
Slooff
T. J.
,
1987
, “
Adaptive Bone Remodeling Theory Applied to Prosthetic-Design Analysis
,”
Journal of Biomechanics
, Vol.
20
, pp.
1135
1150
.
17.
Lanyon
L. E.
1984
, “
Functional Strain as a Determinant for Bone Remodeling
,”
Calcified Tissue International
, Vol.
36
, pp.
S56–S61
S56–S61
.
18.
Lanyon, L. E., 1986. Private Communication.
19.
Martin
R. B.
, and
Burr
D. B.
1982
, “
A Hypothetical Mechanism for the Stimulation of Osteonal Remodelling by Fatigue Damage
,”
Journal of Biomechanics
, Vol.
15
, pp.
137
139
.
20.
McLeod, K. J., and Rubin, C. T., 1993, “Strain Oscillations in Functionally Loaded Bone: A Species Independent Determinant of Skeletal Morphology,” Journal of Biomechanics, submitted for publication.
21.
Meade, J. B., 1989, “The Adaptation of Bone to Mechanical Stress: Experimentation and Current Concepts,” Bone Mechanics, S. C. Cowin, ed. CRC Press, Boca Raton, FL, pp. 212–251.
22.
O’Connor
J. A.
,
Lanyon
L. E.
, and
MacFie
H.
,
1982
, “
The Influence of Strain Rate on Adaptive Bone Remodeling
,”
Journal of Biomechanics
, Vol.
15
, pp.
767
781
.
23.
Rice
J. C.
,
Cowin
S. C.
, and
Bowman
J. A.
,
1988
, “
The Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
Journal of Biomechanics
, Vol.
21
, pp.
155
168
.
24.
Rubin
C. T.
, and
Lanyon
L. E.
,
1984
, “
Regulation of Bone Formation by Applied Dynamic Loads
,”
Journal of Bone and Joint Surgery
, Vol.
66A
, pp.
397
415
.
25.
Rubin
C. T.
, and
Lanyon
L. E.
,
1987
, “
Osteoregulatory Nature of Mechanical Stimuli: Function as a Determinant for Adaptive Bone Remodeling
,”
Journal of Orthopaedic Research
, Vol.
5
, pp.
300
310
.
26.
Sadegh
A. M.
,
Luo
G. M.
, and
Cowin
S. C.
,
1993
, “
Bone Ingrowth; An Application of Boundary Element Method to Bone Remodeling at the Implant Interface
,”
Journal of Biomechanics
, Vol.
26
, pp.
167
182
.
27.
Weinbaum, S., Cowin, S. C., and Zeng, Yu, 1991, “A Model for the Fluid Shear Stress Excitation of Membrane Ion Channels in Osteocytic Processes Due to Bone Strain,” 1991 Advances in Bioengineering, R. Vanderby, Jr., ed. American Society of Mechanical Engineers, New York, pp. 317–320.
28.
Weinbaum
S.
,
Cowin
S. C.
, and
Zeng
Y.
,
1994
, “
Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses
,”
Journal of Biomechanics
, Vol.
27
, pp.
339
360
.
29.
Wolff, J., 1892, Das Gesetz der Transformation der Knochen, Hirschwald, Berlin.
30.
Wolff, J., 1986, The Law of Bone Remodelling, Springer, Berlin.
This content is only available via PDF.
You do not currently have access to this content.