Bone remodeling theory based on strain energy density (SED) as the feedback control variable was used in conjunction with the finite element method to analyze the shape of the vertebral bodies within the ligamentous motion segment. The remodeling theory was once again applied to the altered two motion segments model to predict the Young’s modulus distribution of the cancellous bone within the vertebral bodies. A three-dimensional finite element model of the two motion segments ligamentous lumbar spine (L3-5) was developed. Bone remodeling response (external as well as internal) of the motion segments to a uniaxial compressive load of 424.7 N was studied. The external shape of the converged model matched the normal shape of a vertebral body. The internal remodeling resulted in regional cancellous bone Young’s moduli (or bone density) distributions similar to those reported in the literature; posterocentral regions of the vertebrae were predicted to have greater values of the elastic modulus than that of the outer regions. The results of the present study suggest that vertebral body assumes an adequate/optimum structure in terms of both its shape and its elastic moduli distribution within the cancellous region in response to the applied load. Extensions of the present model and its clinically relevant applications are discussed.

1.
Wolff J., Das Gesetz der Transformation der Knochen, Herchwild, Berlin (Translated as The Law of Bone Transformation) Springer, Berlin, 1892
2.
Cowin
S. C.
, and
Hegedus
D. H.
, “
Bone Remodeling I: Theory of Adaptive Elasticity
,”
Journal of Elasticity
, Vol.
6
,
1976
, pp.
313
326
.
3.
Firoozbakhsh
K.
, and
Cowin
S. C.
, “
An Analytical Model for Pauwel’s Functional, Adaptation Mechanism In Bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
,
1981
, pp.
247
252
.
4.
Hart
R. T.
,
Davy
D. T.
, and
Heiple
K. G.
, “
A Computational Method For Stress Analysis of Adaptive Elastic Materials With A View Toward Applications
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
,
1984
, pp.
342
350
.
5.
Beaupre´
G. S.
,
Orr
T. E.
, and
Carter
D. R.
, “
An Approach For Time-Dependent Bone Modeling And Remodeling-Theoretical Development
,”
Journal of Orthopaedic Research
, Vol.
8
,
1990
, pp.
651
661
.
6.
Turner
C. H.
, “
On Wolff’s Law Of Trabecular Architecture
,”
Journal of Biomechanics
, Vol.
25
,
1992
, pp.
1
9
.
7.
Cowin
S. C.
,
Sadegh
A. M.
, and
Luo
G. M.
, “
An Evolutionary Wolff’s Law For Trabecular Architecture
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
,
1992
, pp.
129
136
.
8.
Fyhrie
D. P.
, and
Carter
D. M.
, “
A Unifying Principle Relating Stress To Trabecular Bone Morphology
,”
Journal of Orthopaedic Research
, Vol.
4
(
3
),
1986
, pp.
304
317
.
9.
Pendergast
P. J.
, and
Taylor
D.
, “
Design Of Intramedullary Prostheses To Prevent Bone Loss: Predictions Based On Damage-Simulated Remodeling
,”
Journal of Biomedical Engineering
, Vol.
14
,
1992
, pp.
499
506
.
10.
Huiskes
R.
,
Wienans
H.
,
Grootenboer
H. J.
,
Dalstra
M.
,
Fudala
B.
, and
Sloof
T. J.
, “
Adaptive Bone-Remodeling Theory Applied To Prosthetic-Design Analysis
,”
Journal of Biomechanics
, Vol.
20
,
1987
, pp.
1135
1150
.
11.
Weinans
H.
,
Huiskes
R.
,
van Rietbergen
B.
,
Sumner
D. R.
,
Turner
T. M.
, and
Galante
J. O.
, “
Adaptive Bone Remodeling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments And Computer Simulation
,”
Journal of Orthopaedic Research
, Vol.
11
,
1992
, pp.
500
513
.
12.
Beaupre´
G. S.
,
Orr
T. E.
, and
Carter
D. R.
, “
An Approach For Time-Dependent Bone Modeling And Remodeling-Application: A Preliminary Remodeling Situation
,”
Journal of Orthopaedic Research
, Vol.
8
,
1990
, pp.
662
670
.
13.
Goel
V. K.
,
Kim
Y. E.
,
Lim
T. H.
, and
Weinstein
J. N.
, “
An Analytical Investigation Of The Mechanics Of Spinal Instrumentation
,”
Spine
, Vol.
13
,
1988
, pp.
1003
1011
.
14.
Kim
Y. E.
,
Goel
V. K.
,
Weinstein
J. N.
, and
Lim
T. H.
, “
Effect of Disc Degeneration At One Level On The Adjacent Level in the Axial Mode
,”
Spine
, Vol.
16
,
1991
, pp.
331
335
.
15.
Goel
V. K.
, and
Kim
Y. E.
, “
Effects Of Injury On The Spinal Motion Segment Mechanics In The Axial Compression Mode
,”
Clinical Biomechanics
, Vol.
4
,
1989
, pp.
161
167
.
16.
Goel
V. K.
,
Lim
T. H.
,
Gwon
J.
,
Chen
J. Y.
,
Winterbottom
J. M.
,
Park
J. B.
,
Weinstein
J. N.
, and
Ahn
J. Y.
, “
Effects Of Rigidity Of An Internal Fixation Device
,”
Spine
, Vol.
16
,
1991
, pp.
S155–S161
S155–S161
.
17.
Edwards W. T., McBroom, R. C., and Hayes W. C., “Variation Of Density In The Vertebral Body Measured By Quantitative Computed Tomography,” Presented at the 32nd Annual Meeting of the Orthopaedic Research Society, New Orleans, LA, Feb. 17–20, 1986, p. 42.
18.
Cody D. D., Brown E. B., and Flynn M. J., “Regional Bone Density Distribution In Female Spines (T6-L4),” 38th Annual Meeting, Orthopaedic Research Society, Feb. 17–20, 1992, p. 449.
19.
Keller
T. S.
,
Hannson
T. H.
,
Abram
A. C.
,
Spengler
D. M.
, and
Panjabi
M. M.
, “
Regional Variations In The Compressive Properties Of Lumbar Vertebral Trabeculae: Effects Of Disc Degeneration
,”
Spine
, Vol.
14
,
1989
, pp.
1012
1019
.
20.
Seenivasan
G.
,
Goel
V. K.
, “
Applying Bone Adaptive Remodelling Theory to Ligamentous Spine—Preliminary Results of Partial Neucleotomy and Stabilization
,”
IEEE Eng. in Med. & Biol.
, Vol.
13
,
508
516
,
1994
.
21.
Uhthoff
H. K.
,
Foux
A.
,
Yeadon
A.
,
McAuley
J.
, and
Black
R. C.
, “
Two Processes Of Bone Remodeling In Plated Intact Femora: An Experimental Study In Dogs
,”
Journal of Orthopaedic Research
, Vol.
11
,
1993
, pp.
78
91
.
22.
Harrigan, T. P., and Hamilton, J. J., “Bone Remodeling And Structural Optimization,” (Personal Communication, 1994).
23.
Goel V. K., and Weinstein J., Biomechanics of the Spine: Clinical and Surgical Perspective, CRC Press, Boca Raton, FL, 1990.
24.
Ladin
Z.
, and
Neff
K. M.
, “
Testing of a biomechanical model of the lumbar muscle force distribution using quasistatic loading exercises
,”
ASME J Biomech Eng
, Vol.
114
,
1992
, pp.
442
449
.
25.
Marras
W. S.
,
Lavender
S. A.
, and
Leurgans
S. E.
, et al., “
The Role of Dynamic Three-Dimensional Trunk Motion in Occupationally Related Low Back Disorders—Effects of Work Place Factors, Trunk Position and Trunk Motion Characteristics on Risk of Injury
,”
Spine
, Vol.
18
,
1993
, pp.
617
628
.
26.
Schultz
A. B.
,
Andersson
G. B. J.
,
Ortengren
R.
,
Haderspeck
K.
, and
Nachemson
A.
, “
Loads on the Lumbar Spine—Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J Bone Joint Surg [Am]
, Vol.
64A
,
1982
, pp.
713
720
.
This content is only available via PDF.
You do not currently have access to this content.